Culture is considered as the reference standard assay for diagnosis of Brucella spp. in humans and animals but it is time-consuming and hazardous. In this study, we evaluated the performances of newly designed real-time PCR assays using TaqMan probes and targeting the 3 following specific genes: (i) the insertion sequence IS711, (ii) bcsp31 and (iii) per genes for the detection of Brucella at genus level. The real-time PCR assays were compared to previously described conventional PCR assays targeting the same genes. The genus-specificity was evaluated on 26 Brucella strains, including all species and biovars. The analytical specificity was evaluated on a collection of 68 clinically relevant, phylogenetically related or serologically cross-reacting micro-organisms. The analytical sensitivity was assessed using decreasing DNA quantities of Brucella ovis, B. melitensis bv. 1, B. abortus bv. 1 and B. canis reference strains. Finally, intra-assay repeatability and inter-assay reproducibility were assessed. All Brucella species DNA were amplified in the three tests. However, the earliest signal was observed with the IS711 real-time PCR, where it varied according to the IS711 copy number. No cross-reactivity was observed in all three tests. Real-time PCR was always more sensitive than conventional PCR assays. The real-time PCR assay targeting IS711 presented an identical or a greater sensitivity than the two other tests. In all cases, the variability was very low. In conclusion, real-time PCR assays are easy-to-use, produce results faster than conventional PCR systems while reducing DNA contamination risks. The IS711-based real-time PCR assay is specific and highly sensitive and appears as an efficient and reproducible method for the rapid and safe detection of the genus Brucella.
To study the dynamics of bovine tuberculosis (bTB) in France, 4,654 M. bovis strains isolated mainly from livestock and wildlife since 1978 were characterized by spoligotyping and MLVA based on MIRU-VNTR. In our study spoligotyping allowed the discrimination of 176 types although 3 spoligotypes are predominant and account for more than half of the total strain population: SB0120 (26%), SB0134 (11%) and SB0121 (6%). In addition, 11% of the isolates, principally from Southern France, showing close spoligotypes and MIRU-VNTR types have been gathered in a family designated as the “F4-family”. MLVA typing allowed extensive discrimination, particularly for strains with predominant spoligotypes, with a total of 498 genotypes, several of which were highly regionalized. The similarity of the strains’ genetic relationships based on spoligotyping and MIRU-VNTR markers supports the co-existence of different clonal populations within the French M. bovis population. A genetic evolution of the strains was observed both geographically and in time. Indeed, as a result of the reduction of bTB due to the national control campaigns, a large reduction of the strains’ genetic variability took place in the last ten years. However, in the regions were bTB is highly prevalent at present, cases in both livestock and in wildlife are due to the spread of unique local genotype profiles. Our results show that the highly discriminating genotyping tools used in this study for molecular studies of bTB are useful for addressing pending questions, which would lead to a better insight into the epidemiology of the disease, and for finding proper solutions for its sustainable control in France.
Bacteriology and histopathology are the most commonly used tests used for official confirmatory diagnosis of bovine tuberculosis (bTB) in cattle in most countries. PCR is also being used increasingly because it allows a fast diagnosis. This test could be applied as a supplement to or replacement for current bTB confirmatory diagnostic tests but its characteristics have first to be evaluated. The aim of this study was to estimate and compare sensitivities and specificities of bacteriology, histopathology and PCR under French field conditions, in the absence of a gold standard using latent class analysis. The studied population consisted of 5,211 animals from which samples were subjected to bacteriology and PCR (LSI VetMAX™ Mycobacterium tuberculosis Complex PCR Kit, Life Technologies) as their herd of origin was either suspected or confirmed infected with bTB or because bTB-like lesions were detected during slaughterhouse inspection. Samples from 697 of these animals (all with bTB-like lesions) were subjected to histopathology. Bayesian models were developed, allowing for dependence between bacteriology and PCR, while assuming independence from histopathology. The sensitivity of PCR was higher than that of bacteriology (on average 87.7% [82.5–92.3%] versus 78.1% [72.9–82.8%]) while specificity of both tests was very good (on average 97.0% for PCR [94.3–99.0%] and 99.1% for bacteriology [97.1–100.0%]). Histopathology was at least as sensitive as PCR (on average 93.6% [89.9–96.9%]) but less specific than the two other tests (on average 83.3% [78.7–87.6%]). These results suggest that PCR has the potential to replace bacteriology to confirm bTB in samples submitted from suspect cattle.
Mycobacterium bovis infection in wild red foxes was found in southern France, where livestock and other wildlife species are infected. Foxes frequently interact with cattle but have been underestimated as a reservoir of M. bovis. Our results suggest a possible role of the red fox in the epidemiology of bovine tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.