The discovery of Streptomyces-produced streptomycin founded the age of tuberculosis therapy. Despite the subsequent development of a curative regimen for this disease, tuberculosis remains a worldwide problem, and the emergence of multidrug-resistant Mycobacterium tuberculosis has prioritized the need for new drugs. Here we show that new optimized derivatives from Streptomyces-derived griselimycin are highly active against M. tuberculosis, both in vitro and in vivo, by inhibiting the DNA polymerase sliding clamp DnaN. We discovered that resistance to griselimycins, occurring at very low frequency, is associated with amplification of a chromosomal segment containing dnaN, as well as the ori site. Our results demonstrate that griselimycins have high translational potential for tuberculosis treatment, validate DnaN as an antimicrobial target, and capture the process of antibiotic pressure-induced gene amplification.
Down-regulation of detoxification genes, notably cytochrome P450 (CYPs), in primary hepatocyte cultures is a long-standing and major concern. We evaluated the influence of medium flow in this model. Hepatocytes isolated from 12 different liver donors were cultured either in a multichamber modular bioreactor (MCmB, flow rate 250–500 μL/min) or under standard/static conditions, and the expression of 32 genes, enzyme activities and biological parameters were measured 7–21 days later. mRNA expression of genes involved in xenobiotic/drug metabolism and transport, including CYP1A1, 1A2, 2B6, 2C9, 3A4 (and activities for some of them), UDP-glucuronosyltransferase (UGT) 1A1, UGT2B4, UGT2B7, glutathione S-transferase (GSTα), and multidrug resistance protein 1 (MDR1) and MRP2, were specifically up-regulated by medium flow as compared with static controls in all cultures tested. In 2-week-old cultures, expression of detoxification genes reached levels close to or higher than those measured in freshly isolated hepatocytes. In contrast, CYP2D6 and most of other tested genes were not affected by medium flow. We conclude that medium flow specifically interferes with, and up-regulates, the activity of xenosensors and/or the expression of detoxification genes in primary human hepatocytes. Down-regulation of detoxification genes in conventional (static) cultures is therefore partly a consequence of the absence of medium circulation.
The wingless-type MMTV integration site family (WNT)/b-catenin/ adenomatous polyposis coli (CTNNB1/APC) pathway has been identified as a regulator of drug-metabolizing enzymes in the rodent liver. Conversely, little is known about the role of this pathway in drug metabolism regulation in human liver. Primary human hepatocytes (PHHs), which are the most physiologically relevant culture system to study drug metabolism in vitro, were used to investigate this issue. This study assessed the link between cytochrome P450 expression and WNT/b-catenin pathway activity in PHHs by modulating its activity with recombinant mouse Wnt3a (the canonical activator), inhibitors of glycogen synthase kinase 3b, and small-interfering RNA to invalidate CTNNB1 or its repressor APC, used separately or in combination. We found that the WNT/ b-catenin pathway can be activated in PHHs, as assessed by universal b-catenin target gene expression, leucine-rich repeat containing G protein-coupled receptor 5. Moreover, WNT/ b-catenin pathway activation induces the expression of CYP2E1, CYP1A2, and aryl hydrocarbon receptor, but not of CYP3A4, hepatocyte nuclear factor-4a, or pregnane X receptor (PXR) in PHHs. Specifically, we show for the first time that CYP2E1 is transcriptionally regulated by the WNT/b-catenin pathway. Moreover, CYP2E1 induction was accompanied by an increase in its metabolic activity, as indicated by the increased production of 6-OH-chlorzoxazone and by glutathione depletion after incubation with high doses of acetaminophen. In conclusion, the WNT/b-catenin pathway is functional in PHHs, and its induction in PHHs represents a powerful tool to evaluate the hepatotoxicity of drugs that are metabolized by CYP2E1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.