The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by ϳ3 glutamyl units. Using blot overlay assays, we have tested the ability of polyglutamylation to modulate the interaction of two other structural MAPs, MAP1A and MAP1B, with tubulin. MAP1A and MAP2 display distinct behavior in terms of tubulin binding; they do not compete with each other, even when the polyglutamyl chains of tubulin are removed, indicating that they have distinct binding sites on tubulin. Binding of MAP1A and MAP1B to tubulin is also controlled by polyglutamylation and, although the modulation of MAP1B binding resembles that of MAP2, we found that polyglutamylation can exert a different mode of regulation toward MAP1A. Interestingly, although the affinity of the other MAPs tested so far decreases sharply for tubulins carrying long polyglutamyl chains, the affinity of MAP1A for these tubulins is maintained at a significant level. This differential regulation exerted by polyglutamylation toward different MAPs might facilitate their selective recruitment into distinct microtubule populations, hence modulating their functional properties. Microtubules (MTs)1 are dynamic polymers, which are essential for a large variety of cellular functions such as cell morphology and polarity, cell motility, intracellular trafficking, and cell division. They are made up of ␣-and -tubulin heterodimers, the two related subunits displaying a large isoform polymorphism due to the expression of multiple genes whose products are substrates for several post-translational modifications (for review, see Refs.
Interaction of rat kinesin and Drosophila nonclaret disjunctional motor domains with tubulin was studied by a blot overlay assay. Either plus-end or minus-end-directed motor domain binds at the same extent to both alpha- and beta-tubulin subunits, suggesting that kinesin binding is an intrinsic property of each tubulin subunit and that motor directionality cannot be related to a preferential interaction with a given tubulin subunit. Binding features of dimeric versus monomeric rat kinesin heads suggest that dimerization could drive conformational changes to enhance binding to tubulin. Competition experiments have indicated that kinesin interacts with tubulin at a Tau-independent binding site. Complementary experiments have shown that kinesin does not interact with the same efficiency with the different tubulin isoforms. Masking the polyglutamyl chains with a specific monoclonal antibody leads to a complete inhibition of kinesin binding. These results are consistent with a model in which polyglutamylation of tubulin regulates kinesin binding through progressive conformational changes of the whole carboxyl-terminal domain of tubulin as a function of the polyglutamyl chain length, thus modulating the affinity of tubulin for kinesin and Tau as well. These results indicate that microtubules, through tubulin polymorphism, do have the ability to control microtubule-associated protein binding.
Glutamine:fructose-6-phosphate amidotransferase (Gfat) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway. The increasing amount of evidence that links excess hexosamine biosynthesis with pathogenic complications of type II diabetes highlights the need to understand the regulation of Gfat. Previous studies showed that eukaryotic Gfat is subjected to feedback inhibition by UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) and to phosphorylation by cAMP-activated protein kinase A (PKA). In this study, overexpression of human Gfat isoform 1 (hGfat1) in insect cells revealed that hGfat1 is phosphorylated in vivo. Using matrix-assisted laser desorption/ionization and electrospray tandem mass spectrometry, we have identified Ser243 as a novel phosphorylation site. Biochemical properties of the wild type and the Ser243Glu mutant of hGfat1 overexpressed in Escherichia coli were compared. Our results provide evidence that phosphorylation at Ser243 stimulates glucosamine 6-phosphate-synthesizing activity, lowers amidohydrolyzing activity in the absence of fructose 6-phosphate (F6P) (glutaminase activity), and lowers Km(F6P) 2-fold, but has no effect on UDP-GlcNAc inhibition. On the basis of the sequence consensus, AMP-activated protein kinase and calcium/calmodulin-dependent kinase II were identified to phosphorylate specifically Ser243 in vitro. Phosphorylation by these two kinases results in an increase of enzymatic activity by 1.4-fold. These findings suggest for the first time that hGfat1 may be regulated by kinases other than PKA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.