The authors examine the turbulent properties of a baroclinically unstable oceanic flow using primitive equation (PE) simulations with high resolution (in both horizontal and vertical directions). Resulting dynamics in the surface layers involve large Rossby numbers and significant vortical asymmetries. Furthermore, the ageostrophic divergent motions associated with small-scale surface frontogenesis are shown to significantly alter the nonlinear transfers of kinetic energy and consequently the time evolution of the surface dynamics. Such impact of the ageostrophic motions explains the emergence of the significant cyclone-anticyclone asymmetry and of a strong restratification in the upper layers, which are not allowed by the quasigeostrophic (QG) or surface quasigeostrophic (SQG) theory. However, despite this strong ageostrophic character, some of the main surface properties are surprisingly still close to the surface quasigeostrophic equilibrium. They include a noticeable shallow (Ϸk Ϫ2) velocity spectrum as well as a conspicuous local spectral relationship between surface kinetic energy, sea surface height, and density variance over a large range of scales (from 400 to 4 km). Furthermore, surface velocities can be remarkably diagnosed from only the surface density using SQG relations. This suggests that the validity of some specific SQG relations extends to dynamical regimes with large Rossby numbers. The interior dynamics, on the other hand, strongly differ from the surface dynamics, involving a small Rossby number, a steep (Ϸk Ϫ4 ) velocity spectrum, and a somewhat steeper density spectrum. The compensation of the surface restratification by a destratification at depth confirms a connection between the surface and the interior induced by the small-scale divergent motions.
We explore the nature of inertial equilibration of equatorial flows in the presence of mean meridional and vertical shears of the basic state, with oceanic applications in mind. The study is motivated by the observational evidence that the subthermocline equatorial mean circulation displays nearly zero Ertel potential vorticity away from the equator, when taking into account the non-traditional horizontal component of the Earth rotation. This observed state precisely verifies the marginal condition for inertial instability: a linear analysis for the equatorial β-plane confirms that the usual condition of instability, namely that Ertel potential vorticity should be of opposite sign to the vertical Coriolis parameter, remains valid even when the traditional approximation is relaxed. Analytical linear normal modes reveal that a meridional shear of the basic state leads to a vertical stacking of equatorially-trapped zonal flows of alternate signs, with a new centre of symmetry located at the dynamical equator. A vertical shear of the basic state causes a meridional stacking of extra-equatorial zonal flows.In an inviscid framework, a two-dimensional formulation is ill-posed and we resort to non-hydrostatic viscous simulations to determine the nonlinear normal forms of the system. The influence of a small-scale eddy diffusivity and a large-scale Rayleigh damping on the equilibrated vertical scale is determined numerically. The nonlinear equilibration occurs through a steady-state bifurcation from a basic state without jets to another steady state with secondary jets of alternate signs. The final state corresponds to eastward jets located on the geographic equator, while westward jets are located near the dynamical equator. These results are consistent with in situ observations of equatorial deep jets.The analogy between the equatorial meridional shear flow and the cylindrical Couette–Taylor flow with an axial density stratification is detailed. There is a strong similarity in the general symmetries and nonlinear normal forms of the two problems. Similarly to the homogeneous Couette–Taylor flow, the gap width between the two cylinders is important for determining the axial scale of the secondary flow through the Reynolds number. For the equatorial problem, an upper bound for the height scale of inertial jets is such that the corresponding equatorial radius of deformation times √2 fits between the geographic and dynamic equators.One of our main conclusions is that the raisond’être of the observed region of zero Ertel potential vorticity is to facilitate angular momentum exchanges between the two hemispheres and inertial deep jets are the byproducts of this angular momentum mixing.
Satellite observations of the last two decades have led to a major breakthrough emphasizing the existence of a strongly energetic mesoscale turbulent eddy field in all the oceans. This ocean mesoscale turbulence is characterized by cyclonic and anticyclonic eddies (with a 100‐ to 300‐km size and depth scales of ∼500–1,000 m) that capture approximatively 80% of the total kinetic energy and is now known to significantly impact the large‐scale ocean circulation, the ocean's carbon storage, the air‐sea interactions, and therefore the Earth climate as a whole. However, ocean mesoscale turbulence revealed by satellite observations has properties that differ from those related to classical geostrophic turbulence theories. In the last decade, a large number of theoretical and numerical studies has pointed to submesoscale surface fronts (1–50 km), not resolved by satellite altimeters, as the key suspect explaining these discrepancies. Submesoscale surface fronts have been shown to impact mesoscale eddies and the large‐scale ocean circulation in counterintuitive ways, leading in particular to up‐gradient fluxes. The ocean engine is now known to involve energetic scale interactions, over a much broader range of scales than expected one decade ago, from 1 to 5,000 km. New space observations with higher spatial resolution are however needed to validate and improve these recent theoretical and numerical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.