Accidental or malicious releases in the atmosphere are more likely to occur in built-up areas, where flow and dispersion are complex. The EMERGENCIES project aims to demonstrate the operational feasibility of three-dimensional simulation as a support tool for emergency teams and first responders. The simulation domain covers a gigantic urban area around Paris, France, and uses high-resolution metric grids. It relies on the PMSS modeling system to model the flow and dispersion over this gigantic domain and on the Code_Saturne model to simulate both the close vicinity and the inside of several buildings of interest. The accelerated time is achieved through the parallel algorithms of the models. Calculations rely on a two-step approach: the flow is computed in advance using meteorological forecasts, and then on-demand release scenarios are performed. Results obtained with actual meteorological mesoscale data and realistic releases occurring both inside and outside of buildings are presented and discussed. They prove the feasibility of operational use by emergency teams in cases of atmospheric release of hazardous materials.
The use of modeling as a support tool for crisis management and decision planning requires fast simulations in complex built-up areas. The Parallel Micro SWIFT SPRAY (PMSS) modeling system offers a tradeoff between accuracy and fast calculations, while retaining the capability to model buildings at high resolution in three dimensions. PMSS has been applied to actual areas of responsibilities of emergency teams during the EMERGENCIES (very high rEsolution eMERGEncy simulatioN for citIES) and EMED (Emergencies for the MEDiterranean sea) projects: these areas cover several thousands of square kilometers. Usage of metric meshes on such large areas requires domain decomposition parallel algorithms within PMSS. Sensitivity and performance of the domain decomposition has been evaluated both for the flow and dispersion models, using from 341 up to 8052 computing cores. Efficiency of the Parallel SWIFT (PSWIFT) flow model on the EMED domain remains above 50% for up to 4700 cores. Influence of domain decomposition on the Parallel SPRAY (PSPRAY) Lagrangian dispersion model is less straightforward to evaluate due to the complex load balancing process. Due to load balancing, better performance is achieved with the finest domain decomposition. PMSS is able to simulate accidental or malevolent airborne release at high resolution on very large areas, consistent with emergency team responsibility constrains, and with computation time compatible with operational use. This demonstrates that PMSS is an important asset for emergency response applications.Atmosphere 2019, 10, 404 2 of 17 Gaussian models can provide simulation results in a short time and partly account for the effects of buildings. Nonetheless, they cannot take into account the unsteady flow in and above the urban canopy and the complex dispersion pattern between the buildings.Contrary to simplified models, computational fluid dynamics (CFD) models solve the Navier-Stokes equations. CFD models are categorized, according to the scale of the range of the spatio-temporal scales that are resolved, in Reynolds averaged Navier-Stokes (RANS) [11,12] and large eddy simulation (LES) [13][14][15]. While they provide reference solutions for complex flows in a built-up configuration, they are most often limited to academic configurations and/or small built-up domains: they indeed require very long computational times by default, making them unsuitable for live operational use.As a trade-off between computational time and accuracy of the solution, Röckle [16] first suggested an original approach. This approach uses mass consistency with observations to solve for the mean flow. Vortex flow structures are analytically defined around and between buildings and within street canyons, and then a mass consistency scheme is applied. Kaplan and Dinar [17] improved the approach by coupling the flow with a Lagrangian particle dispersion model to compute dispersion in an urban area. The PMSS modeling system uses this approach and integrates subsequent modifications using more recent urban tra...
In the case of an atmospheric release of a noxious substance, modeling remains an essential tool to assess and forecast the impact of the release. The impact of such situations on populated, and hence built-up, areas is of the uttermost importance. However, modeling on such areas requires specific high-resolution approaches, which are complex to set up in emergency situations. Various approaches have been tried and evaluated: The EMERGENCIES and EMED project demonstrated an effective strategy using intensive parallel computing. Large amounts of data were produced that proved initially to be difficult to visualize, especially in a crisis management framework. A dedicated processing has been set up to allow for rapid and effective visualization of the modeling results. This processing relies on a multi-level tiled approach initiated in web cartography. The processing is using a parallel approach whose performances were evaluated using the large amounts of data produced in the EMERGENCIES and EMED projects. The processing proved to be very effective and compatible with the requirements of emergency situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.