We investigated whether the bioavailability of isoflavones could be enhanced by enzymatic hydrolysis of glycosides to aglycones before consumption of a nonfermented soy food. Two drinks were formulated with an enriched isoflavone extract from soy germ (Fujiflavone P10), one of which was hydrolyzed enzymatically with beta-glucosidase to produce aglycones. In a randomized, double-blinded, cross-over study, six European, postmenopausal women consumed each soy drink at a 1-wk interval at a concentration of 1 mg total isoflavones/kg body. The plasma and urinary pharmacokinetics of daidzein, genistein and glycitein did not differ after consumption of the two beverages. Plasma total isoflavone concentrations reached 4-5 micro mol/L. The pharmacokinetics of glycitein were similar to those of daidzein. The isoflavone secondary metabolites detected were dihydrodaidzein in plasma and O-desmethylangolensin, equol, and dihydrogenistein in urine. The ratios of individual isoflavones to one another were not conserved from food to plasma to urine, indicating that the individual isoflavones do not have the same absorptions and body retentions. In conclusion, previous hydrolysis of glycosides to aglycones does not enhance the bioavailability of isoflavones in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.