Tumor necrosis factor (TNF)-␣ is initially synthesized as a membrane-bound, cell-associated 26-kDa protein that is further cleaved to yield the soluble 17-kDa form. By using a radiolabeled in vitro translated TNF-␣ precursor we detected a serine proteinase processing activity present in crude membrane preparations of monocytic cells able to generate a 17-kDa active protein. A similar processing pattern was obtained using purified neutral serine proteinase proteinase-3 (PR-3). Moreover, while a secretory leukocyte proteinase inhibitor (a natural serine anti-proteinase) did not affect the in vitro TNF-␣ processing, IgG preparations containing high titers of anti-PR-3 autoantibodies completely blocked this activity. The NH 2 -terminal sequencing of the reaction products obtained with either membrane preparations or PR-3 showed that cleavage occurs in both cases between Val 77 and Arg 78 . These results together with cellular expression and localization of PR-3 suggest a potential role for this enzyme as an accessory TNF-␣ processing enzyme.
Tumor necrosis factor (TNF)-alpha is initially synthesized as an extracellular membrane-associated 26-kDa protein that is further cleaved at Ala76-Val77 to yield the soluble 17-kDa form. Recently, peptide-hydroxamate metalloproteinase inhibitors have been reported to block the proteolytic processing of TNF-alpha, thus suggesting that the putative TNF-alpha converting enzyme (TACE) is a zinc-dependent metalloendopeptidase. In this report, we characterize a TNF-alpha converting activity (TACA) that cleaves in vitro the human 26-kDa TNF-alpha at the physiological processing site. The chromatography steps followed for purification and the use of a panel of proteinase inhibitors indicate that the enzyme responsible for TACA is a membrane glycosylated metalloendopeptidase which is most likely different from the matrix-degrading metalloproteinases. The failure of TACA to process a Val77-->Gly77 precursor mutant emphasizes the importance of hydrophobic residue at P1' position. In addition, TACA is not able to cleave the mouse pro-TNF-alpha and does not catalyze in vitro the processing of other transmembrane proteins susceptible to metalloproteinase-mediated shedding, such as interleukin-6 or TNF receptors. These studies suggest the existence of an enzyme specific for TNF-alpha within the metalloproteinases involved in the processing/shedding of a number of cytokines and cytokine receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.