the consumption of poultry meat and eggs is expected to increase considerably in the nearest future, which creates the demand for new poultry feed ingredients in order to support sustainable intensive production. Moreover, the constant improvement of the genetic potential of poultry has resulted in an increased nutrient density in poultry feeds, which limits the possibility to include low quality feed ingredients. therefore, the feed industry needs new sources of highly digestible protein with a desirable amino acid composition to substitute other valuable but limited protein sources of animal origin, such as fishmeal. With estimated 1.5 to 3 million species, the class of insects harbours the largest species variety in the world including species providing a high protein and sulphur amino acids content, which can be successfully exploited as feed for poultry. the aim of this paper is to review the present state of knowledge concerning the use of insect protein in poultry nutrition and the possibilities of mass production of insects for the feed industry. there is no doubt that insects have an enormous potential as a source of nutrients (protein) and active substances (polyunsaturated fatty acids, antimicrobial peptides) for poultry. It can be concluded, based on many experimental results, that meals from insects being members of the orders Diptera (black soldier fly, housefly), Coleoptera (mealworms) and Orthoptera (grasshoppers, locust, crickets and katylids), may be successfully used as feed material in poultry diets. However, legislation barriers in the european union, as well as relatively high costs and limited quantity of produced insects are restrictions in the large-scale use of insect meals in poultry nutrition.
Phytase is well studied and explored, however, little is known about its effects on the microbial ecology of the gastrointestinal tract. In total, 400 one-day-old female Ross 308 chicks were randomly distributed to four experimental groups. The dietary treatments were arranged as a 2 × 2 complete factorial design, with the factors being adequate (PC) or insufficient calcium (Ca) and digestible phosphor (dP)(NC) and with or without 5000 phytase units (FTU)/kg of Escherichia coli 6-phytase. The gastrointestinal tract pH values, ileal microbial communities and short-chain fatty acid concentrations in the digesta were determined. The reduction in Ca and dP concentration significantly affected pH in the crop and caeca, and addition of phytase to the NC resulted in a pH increase in the ileum. The reduction in Ca and dP concentration significantly lowered, while phytase supplementation increased ileal total bacterial counts. Additionally, the deficient diet reduced butyrate- but increased lactate-producing bacteria. The addition of phytase increased Lactobacillus sp./Enterococcus sp. whereas in case of Clostridium leptum subgroup, Clostridium coccoides - Eubacterium rectale cluster, Bifidobacterium sp. and Streptococcus/Lactococcus counts, a significant Ca and dP level x phytase interaction was found. However, the recorded interactions indicated that the effects of phytase and Ca and dP levels were not consistent. Furthermore, the reduction of Ca and dP level lowered Clostridium perfringens and Enterobacteriaceae counts. The analysis of fermentation products showed that reducing the Ca and dP content in the diet reduced total SCFA, DL-lactate, and acetic acid in the ileum whereas phytase increased concentrations of these acids in the NC group. This suggests that P is a factor which limits fermentation in the ileum. It may be concluded that phytase plays a role in modulating the gut microbiota of chicken, however, this is clearly linked with the levels of P and Ca in a diet.
SummaryChitosan is a non-toxic polyglucosamine, widespread in nature, which is deacetylated to varying degrees form of chitin, a component of exoskeleton of shrimps, crabs and insects. Because chitosan contains reactive functional groups, that is, amino acids and hydroxyl groups, it is characterised by antimicrobial, anti-inflammatory, antioxidative, antitumor, immunostimulatory and hypocholesterolemic properties when fed as dietary additive for farm animals. This article reviews and discusses the results of studies on the effects of dietary chitosan and its oligosaccharide derivatives on performance and metabolic response in poultry and pigs, that is, haematological, biochemical and immunological blood characteristics, microbiological profile of intestines, intestinal morphology and digestibility of nutrients, as well as on the quality of meat and eggs. The results of most of the experiments presented in this review indicate that chitosan used as a feed additive for poultry and pigs has some beneficial, biological effects, including immunomodulatory, anti-oxidative, antimicrobial and hypocholesterolemic properties. These properties of chitosan, unlike many other kinds of feed additives, were often reflected in improved growth performance (body weight gain and/or feed conversion ratio) of young animals, that is, broiler chickens and weaned pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.