The only known elements encoding enterotoxins in coagulase-negative staphylococci are composite Staphylococcus epidermidis pathogenicity islands (SePIs), including SePI and S. epidermidis composite insertion (SeCI) regions. We investigated 1545 Staphylococcus spp. genomes using whole-genome MLST, and queried them for genes of staphylococcal enterotoxin family and for 29 ORFs identified in prototype SePI from S. epidermidis FRI909. Enterotoxin-encoding genes were identified in 97% of Staphylococcus aureus genomes, in one Staphylococcus argenteus genome and in nine S. epidermidis genomes. All enterotoxigenic S. epidermidis strains carried composite SePI, encoding sec and sel enterotoxin genes, and were assigned to a discrete wgMLST cluster also containing genomes with incomplete islands located in the same region as complete SePI in enterotoxigenic strains. Staphylococcus epidermidis strains without SeCI and SePI genes, and strains with complete SeCI and no SePI genes were identified but no strains were found to carry only SePI and not SeCI genes. The systematic differences between SePI and SeCI regions imply a lineage-specific pattern of inheritance and support independent acquisition of the two elements in S. epidermidis. We provided evidence of reticulate evolution of mobile elements that contain elements with different putative ancestry, including composite SePI that contains genes found in other coagulase-negative staphylococci (SeCI), as well as in S. aureus (SePI-like elements). We conclude that SePI-associated elements present in nonenterotoxigenic S. epidermidis represent a scaffold associated with acquisition of virulence-associated genes. Gene exchange between S. aureus and S. epidermidis may promote emergence of new pathogenic S. epidermidis clones.
In the current study, we screened a collection of coagulase-negative staphylococci (CoNS) isolates for orthologues of staphylococcal enterotoxins (SEs) involved in S. aureus-related staphylococcal food poisoning (SFP). The amplicons corresponding to SEs were detected in S. chromogenes, S. epidermidis, S. haemolyticus, S. borealis, S. pasteuri, S. saprophyticus, S. vitulinus, S. warneri, and S. xylosus. All amplicons were sequenced and identified as parts of known S. aureus or S. epidermidis SE genes. Quantitative real-time PCR allowed determining the relative copy number of each SE amplicon. A significant portion of the amplicons of the sea, seb, sec, and seh genes occurred at low copy numbers. Only the amplicons of the sec gene identified in three isolates of S. epidermidis displayed relative copy numbers comparable to sec in the reference enterotoxigenic S. aureus and S. epidermidis strains. Consecutive passages in microbiological media of selected CoNS isolates carrying low copy numbers of sea, seb, sec, and seh genes resulted in a decrease of gene copy number. S. epidermidis isolates harbored a high copy number of sec, which remained stable over the passages. We demonstrated that enterotoxin genes may occur at highly variable copy numbers in CoNS. However, we could identify enterotoxin genes only in whole-genome sequences of CoNS carrying them in a stable form at high copy numbers. Only those enterotoxins were expressed at the protein level. Our results indicate that PCR-based detection of enterotoxin genes in CoNS should always require an additional control, like analysis of their presence in the bacterial genome. We also demonstrate S. epidermidis as a CoNS species harboring SE genes in a stable form at a specific chromosome site and expressing them as a protein.
Little is known about the structure of S. aureus population and the enterotoxin gene content in wild boar. In 1025 nasal swabs from wild boars, 121 S. aureus isolates were identified. Staphylococcal enterotoxin (SE) genes were identified in 18 isolates (14.9%). The seb gene was found in 2 S. aureus isolates, sec in 2 isolates, the see and seh genes were found in 4 and 11 isolates, respectively. The production of SEs was evaluated in bacteria grown in microbial broth. Concentration of SEB reached 2.70 µg/ml after 24 h and 4.46 µg/ml at 48 h. SEC was produced at 952.6 ng/ml after 24 h and 7.2 µg/ml at 48 h. SEE reached 124.1 ng/ml after 24 h and 191.6 ng/ml at 48 h of culture. SEH production reached 4.36 µg/ml at 24 h and 5.42 µg/ml at 48 h of culture. Thirty-nine spa types were identified among S. aureus isolates. The most prevalent spa types were t091 and t1181, followed by t4735 and t742, t3380 and t127. Twelve new spa types, i.e., t20572‒t20583 were identified. The wild boar S. aureus population was shown to contain previously identified animal/human-associated spa types and spa types not identified in humans or animals. We also indicate that wildlife animals can be a significant reservoir of see-positive S. aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.