The aim of the study was to determine in vitro biological activity of fruit ethanol extract from Chaenomeles speciosa (Sweet) Nakai (Japanese quince, JQ) and its important constituents (−)-epicatechin (EC) and chlorogenic acid (CA). The study also investigated the structural changes in phosphatidylcholine (PC) liposomes, dipalmitoylphosphatidylcholine liposomes, and erythrocyte membranes (RBC) induced by the extract. It was found that the extract effectively inhibits oxidation of RBC, induced by 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH), and PC liposomes, induced by UVB radiation and AAPH. Furthermore, JQ extract to a significant degree inhibited the activity of the enzymes COX-1 and COX-2, involved in inflammatory reactions. The extract has more than 2 times greater activity in relation to COX-2 than COX-1 (selectivity ratio 0.48). JQ extract stimulated growth of the beneficial intestinal bacteria Lactobacillus casei and Lactobacillus plantarum. In the fluorimetric method by means of the probes Laurdan, DPH and TMA-DPH, and 1H-NMR, we examined the structural changes induced by JQ and its EC and CA components. The results show that JQ and its components induce a considerable increase of the packing order of the polar heads of lipids with a slight decrease in mobility of the acyl chains. Lipid membrane rigidification could hinder the diffusion of free radicals, resulting in inhibition of oxidative damage induced by physicochemical agents. JQ extract has the ability to quench the intrinsic fluorescence of human serum albumin through static quenching. This report thus could be of huge significance in the food industry, pharmacology, and clinical medicine.
The high antioxidant capacity of chlorogenic acid (CGA) in respect to biological systems is commonly known, though the molecular mechanism underlying that activity is not known. The aim of the study was to determine that mechanism at the molecular and cell level, in particular with regard to the erythrocyte and the lipid phase of its membrane. The effect of CGA on erythrocytes and lipid membranes was studied using microscopic, spectrophotometric and electric methods. The biological activity of the acid was determined on the basis of changes in the physical parameters of the membrane, in particular its osmotic resistance and shapes of erythrocytes, polar head packing order and fluidity of erythrocyte membrane as well as capacity and resistivity of black lipid membrane (BLM). The study showed that CGA becomes localized mainly in the outer part of membrane, does not induce hemolysis or change the osmotic resistance of erythrocytes, and induces formation of echinocytes. The values of generalized polarization and fluorescence anisotropy indicate that CGA alters the hydrophilic region of the membrane, practically without changing the fluidity in the hydrophobic region. The assay of electric parameters showed that CGA causes decreased capacity and resistivity of black lipid membranes. The overall result is that CGA takes position mainly in the hydrophilic region of the membrane, modifying its properties. Such localization allows the acid to reduce free radicals in the immediate vicinity of the cell and hinders their diffusion into the membrane interior.
Functionalization of gold nanoparticles by different chemical groups is an important issue regarding the biomedical applications of such particles. Therefore we have analyzed the interaction between gold nanoparticles functionalized by carbosilane dendrons with human serum albumin at different pHs, and in the presence of the protein unfolding agent, guanidine hydrochloride, using circular dichroism, zeta-potential and fluorescence quenching. The effect of a nanoparticle dendronization and pure dendrons on the immunoreactivity of albumin was estimated using ELISA. In addition, the tool to estimate the binding capacity of dendronized gold nanoparticles using a hydrophobic fluorescent probe 1,8-ANS (1-anilinonaphthalene-8-sulfonic acid) was chosen. We concluded that the effect of a nanoparticle on the structure, immunochemical properties and unfolding of albumin significantly decreased with second and third generations dendrons attached. Differences in pH dependence of the interaction between nanoparticles, their dendrons and albumin showed several effects of the "dendritic corona" and the metallic part of nanoparticle on the protein. These interactions indicate changes in the immunoreactivity of the protein, whereas dendron coating per se had no effect. Thus, dendronization of gold nanoparticles helps to shield them from interactions with plasma proteins.
Cyanidin and its O-glycosides have many important physiological functions in plants and beneficial effects on human health. Their biological activity is not entirely clear and depends on the structure of the molecule, in particular, on the number and type of sugar substituents. Therefore, in this study the detailed structure-activity relationship (SARs) of the anthocyanins/anthocyanidins in relation to their interactions with lipid bilayer was determined. On the basis of their antioxidant activity and the changes induced by them in size and Zeta potential of lipid vesicles, and mobility and order of lipid acyl chains, the impact of the number and type of sugar substituents on the biological activity of the compounds was evaluated. The obtained results have shown, that 3-O-glycosylation changes the interaction of cyanidin with lipid bilayer entirely. The 3-O-glycosides containing a monosaccharide induces greater changes in physical properties of the lipid membrane than those containing disaccharides. The presence of additional sugar significantly reduces glycoside interaction with model lipid membrane. Furthermore, O-glycosylation alters the ability of cyanidin to scavenge free radicals. This alteration depends on the type of free radicals and the sensitivity of the method used for their determination.
With the aim of contributing to the knowledge about their potential therapeutic activity, we determined the biological activities of cyanidin and its selected O-glycosides in relation to erythrocytes (RBCs) and human dermal vascular endothelial cells (HMEC-1). Furthermore, on the basis of changes in the physical/functional properties of the cells, the structure–activity relationships of the compounds were determined. Concerning erythrocytes, we analyzed the antioxidant activity of the compounds and their impact on the RBCs’ shape and transmembrane potential. The compounds’ cytotoxic activity, ability to modulate apoptosis, cell cycle, and intracellular ROS generation, as well as inhibitory activity against AAPH-inducted oxidative stress, were determined in relation to HMEC-1 cells. We demonstrated that biological activity of cyanidin and its O-glycosides strongly depends on the number and type of sugar substituents, and varies depending on the extracellular environment and type of cells. The compounds are practically non-cytotoxic, and do not induce apoptosis or disturb the progression of the cell cycle. Additionally, the compounds alter the shape of RBCs, but they do not affect their transmembrane potential. They effectively protect erythrocytes against free radicals and affect intracellular reactive oxygen spices (ROS) generation under physiological and AAPH-induced oxidative stress conditions. Our results suggest a potential beneficial effect of cyanidin on the cardiovascular system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.