We examined 55 Enterobacter cloacae isolates from clinical specimens for the production of cytotonic and cytotoxic toxins and the presence of the type III secretion system (TTSS). Twelve isolates (22%) revealed cytotoxic activity that caused destruction of Vero cells, whereas 28 (51%) strains induced lysis of the murine macrophage J774 cell line. TTSS genes were present in 27% of the isolates. The results indicated that these bacteria may destroy phagocytes and epithelial cells, which may lead to spread within the host.
The aim of this study was to investigate the interaction of Staphylococcus haemolyticus strains with a macrophage cell line. Infection with the strains resulted in macrophage injury. All strains exhibited cytotoxic effects towards J774 cells. Moreover, the bacteria triggered apoptosis of the cells. The lowest apoptotic index did not exceed 21 %, whereas the highest reached 70 % at 24 h and 85 % at 48 h after infection. Incubation with the bacteria caused loss of mitochondrial membrane potential (ΔΨm) in macrophages. The pro-apoptotic activity of the strains was blocked by a pan-caspase inhibitor z-VAD-fmk, indicating the involvement of caspases in the bacteria-mediated cell death. We observed that the induction of macrophage apoptosis could constitute an important mechanism of pathogenesis by which S. haemolyticus strains evade host immune defences and cause disease.
Interactions of Aeromonas caviae, Aeromonas veronii biotype sobria, and Aeromonas hydrophila strains isolated from fecal specimens of humans with gastroenteritis on murine macrophages, J774 cells, were investigated. Analyses of cellular morphology and DNA fragmentation in phagocytes infected with these strains exhibited typical characteristic features of cells undergoing apoptosis. We observed the morphological changes, including condensation of nuclear chromatin, formation of apoptotic bodies and blebbing of cell membrane, and fragmentation of nuclear DNA into oligonucleosomal fragments. The lowest apoptotic index did not exceed 25%, whereas the highest reached 78% at 24 h and 96% at 48 h after infection. After incubation of J774 cells with cytotoxic enterotoxin isolated from A. veronii biotype sobria strain, we noted that the toxin was able to trigger cytotoxicity and apoptosis of macrophages. The results indicate that apoptosis could be one of the mechanisms contributing to the development of Aeromonas-associated diarrheal disease.
Staphylococcus hominis is a species of the coagulase-negative staphylococci. It has been designated as a potential pathogen but so far the pathogenic mechanisms of this bacterium have not been determined. We studied 30 clinical isolates of methicillin-resistant S. hominis, which were previously examined for biofilm forming properties. The results of this study revealed that all these S. hominis strains had the ability to adhere to HeLa cells. Over 40% of the S. hominis strains invaded epithelial cells. The invasion index ranged from 0 to 41.5%. All isolates exhibited the cytotoxic activity of extracellular factors, which caused the destruction of epithelial cells. More than 90% of these methicillin-resistant strains contained at least one aminoglycosides resistance gene. The ant(4′)-I gene was found in 63% of the isolates, aac(6′)/aph(2″) in 20% and aph(3′)-IIIa in 47%. Two strains were assigned to SCCmec type VIII and three to SCCmec type III. The remaining isolates (83%) harboured a non-typeable SCCmec type. The mec complex A was predominant in this species. The results indicate that the pathogenicity of S. hominis may be multifactorial, involving adhesion, invasion and the activity of extracellular toxins, which cause damage to the host epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.