Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. A better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Metalloproteinase-9 (MMP-9) is one of the most strongly expressed matrix metalloproteinases (MMPs) in the brain. The MMP-9 activity in the brain is strictly regulated, and any disruptions in this regulation contribute to a development of many disorders of the nervous system including multiple sclerosis, brain strokes, neurodegenerative disorders, brain tumors, schizophrenia, or Guillain-Barré syndrome. This article discusses a relationship between development of the nervous system diseases and the functional single nucleotide polymorphism (SNP) at position -1562C/T within the MMP-9 gene. A pathogenic influence of MMP-9-1562C/T SNP was observed both in neurological and psychiatric disorders. The presence of the allele T often increases the activity of the MMP-9 gene promoter and consequently the expression of MMP-9 when compared to the allele C. This leads to a change in the likelihood of an occurrence of diseases and modifies the course of certain brain diseases in humans, as discussed below. The presented data indicates that the MMP-9-1562C/T functional polymorphism influences the course of many neuropsychiatric disorders in humans suggesting a significant pathological role of the MMP-9 metalloproteinase in pathologies of the human central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.