The operando monitoring of pH during the charging and discharging of an electrochemical capacitor in an aqueous neutral salt solution is presented. Proper knowledge of transient and limiting pH values allows for a better understanding of the phenomena that take place during capacitor operation. It also enables the proper assignment of the reaction potentials responsible for water decomposition. It is shown that the pH inside the capacitor is strongly potential-dependent and different for individual electrodes; therefore, the values of the evolution potentials of hydrogen and oxygen cannot be precisely calculated based only on the initial pH of the electrolyte. The operando measurements indicate that the pH at the positive electrode reaches 4, while at the negative electrode, it is 8.5, which in theory could shift the theoretical operating voltage well beyond 1.23 V. On the other hand, high voltage cannot be easily maintained since the electrolyte of both electrode vicinities is subjected to mixing. Operando gas monitoring measurements show that the evolution of electrolysis byproducts occurs even below the theoretical decomposition voltage. These reactions are important in maintaining a voltage-advantaged pH difference within the cell. At the same time, the electrochemical quartz crystal microbalance (EQCM) measurements indicated that the ions governing the pH (OH–) that initially accumulated in the vicinity of the positive electrode enter the carbon porosity, losing their pH-governing abilities. pH fluctuations in the cell are important and play a vital role in the description of its performance during the cyclability at a given voltage. This is especially noticeable in cell floating at 1.3 V, where the pH difference between electrodes is the highest (6 units). The increase of the electrode separation distance acts similarly to the introduction of a semipermeable membrane toward the increase of the capacitor cycle life. During floating at 1.6 V, where the pH difference is not as high anymore (4 units), the influence of separation in terms of electrode stability, although present, is less notable.
Transition metal dichalcogenides (TMDs) with a two-dimensional character are promising electrode materials for an electrochemical capacitor (EC) owing to their unique crystallographic structure, available specific surface area, and large variety of compounds. TMDs combine the capacitive and faradaic contribution in the electrochemical response. However, due to the fact that the TMDs have a strong catalytic effect of promoting hydrogen and oxygen evolution reaction (HER and OER), their usage in aqueous ECs is questioned. Our study shows a hydrothermal l-cysteine–assisted synthesis of two composites based on different carbon materials—multiwalled carbon nanotubes (NTs) and carbon black (Black Pearl-BP2000)—on which MoS2 nanolayers were deposited. The samples were subjected to physicochemical characterization such as X-ray diffraction and Raman spectroscopy which proved that the expected materials were obtained. Scanning electron microscopy coupled with electron dispersive spectroscopy (SEM/EDS) as well as transmission electron microscopy images confirmed vertical position of few-layered MoS2 structures deposited on the carbon supports. The synthetized samples were employed as electrode materials in symmetric ECs, and their electrochemical performance was evaluated and compared to their pure carbon supports. Among the composites, NTs/MoS2 demonstrated the best electrochemical metrics considering the conductivity and capacitance (150 Fg−1), whereas BP2000/MoS2 reached 110 Fg−1 at a current load of 0.2 Ag−1. The composites were also employed in a two-electrode cell equipped with an additional reference electrode to monitor the potential range of both electrodes during voltage extension. It has been shown that the active edge sites of MoS2 catalyze the hydrogen evolution, and this limits the EC operational voltage below 1 V. Additional tests with linear sweep voltammetry allowed to determine the operational working voltage for the cells with all materials. It has been proven that the MoS2/carbon composites possess limited operating voltage, that is, comparable to a pure MoS2 material.
The paper puts forward the concept of double redox electrochemical capacitor operating in an aqueous electrolyte. The redox activity of sulphur from insoluble Bi2S3 nanocrystals embedded in the negative electrode...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.