From the histological point of view, fascia lata is a dense connective tissue. Although extracellular matrix is certainly the most predominant fascia’s feature, there are also several cell populations encountered within this structure. The aim of this study was to describe the existence and characteristics of fascia lata cell populations viewed through a transmission electron microscope. Special emphasis was placed on telocytes as a particular interstitial cell type, recently discovered in a wide variety of tissues and organs such as the heart, skeletal muscles, skin, gastrointestinal tract, uterus and urinary system. The conducted study confirmed the existence of a telocyte population in fascia lata samples. Those cells fulfil main morphological criteria of telocytes, namely, the presence of very long, thin cell processes (telopodes) extending from a relatively small cell body. Aside from telocytes, we have found fibroblasts, mast cells and cells with features of myofibroblastic differentiation. This is the first time it has been shown that telocytes exist in human fascia. Currently, the exact role of those cells within the fascia is unknown and definitely deserves further attention. One can speculate that fascia lata telocytes likewise telocytes in other organs may be involved in regeneration, homeostasis and intracellular signalling.
Fascia lata is an important element of the fascial system, which forms the continuum of connective tissue throughout the body. This deep fascia envelops the entire thigh and hip area and its main function is to transmit mechanical forces generated by the musculoskeletal system of the lower extremities. Fascia lata is also known as a useful and easily harvested graft material. Despite its crucial role in lower extremity biomechanics and wide-ranging applications in plastic and reconstructive surgery, both the structure of fascia lata and particularly the cells populating this tissue are relatively unexplored and therefore poorly understood. The aim of this study was to characterize the main cell populations encountered within human fascia lata and to try to understand their role in health and diseases. Pathologically unchanged human fascia lata was obtained post mortem from adult males. The specimens were analyzed under light, electron, and confocal microscopy. On the basis of different visualization techniques, we were able to characterize in detail the cells populating human fascia lata. The main cells found were fibroblasts, fibrocytes, mast cells, cells showing myoid differentiation, nerve cells, and most interestingly, telocytes. Our results supplement the formerly inadequate information in the literature regarding the cellular components of deep fascial structure, may contribute to a better understanding of the pathogenesis of fascial disorders and improve fascia lata application as a graft material.
The combination of Fourier transform-Raman spectroscopy and uniaxial tensile tests (in MTS Synergie 100 testing machine) was used to investigate microstructural changes in the secondary protein structure of the aortic wall under different levels of stress. The spectroscopic analysis clearly shows differing tension thresholds for material excised in two directions: circumferential and longitudinal. This is confirmed by the results of macroscopic mechanical analyses. The application of strain does not lead to any noticeable change in the bandwidths of the Raman bands. The stress-controlled Raman band analysis shows that the modes at 938 cm −1 assigned as C α -C of the α-helix, 1660 cm −1 amide I (the unordered structure of elastin) and 1668 cm −1 amide I (the collagen triple helix) undergo wavenumber shifting, but the bands at 1004 cm −1 assigned to the phenyl ring breathing mode and 2940 cm −1 to the ν (CH 3 ) and ν (CH 2 ) modes are not affected during the elastic behaviour. A clear correlation between Raman band shifting and the level of mechanical stress has been established. Elastin alone participates in the transmission of low stresses in the circumferential direction, whereas both elastin and collagen take part in the transmission of physiological and higher stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.