Numerous micropollutants, especially endocrine-disrupting compounds (EDCs), can pollute natural aquatic environments causing great concern for human and ecosystem health. While most of the conversation revolves around estrogen and androgen, glucocorticoids (GCs) are also prevalent in natural waters. Despite the fact that GCs play a crucial role in both inflammatory and immunologic development activities, they are also detected in natural waters and considered as one of the EDCs. Although many researchers have mentioned the adverse effect of GCs on aquatic organisms, a complete management technology to remove these pollutants from surface and coastal waters is yet to be established. In the current study, six glucocorticoids (prednisone, prednisolone, cortisone, cortisol, dexamethasone, and 6R-methylprednisolone) have been selected according to their higher detection frequency in environmental waters. The concentration of selected GCs ranged from 0.05 ng/L to 433 ng/L and their removal efficiency ranged from 10% to 99% depending on the water source and associated removal technologies. Although advanced technologies are available for achieving successful removal of GCs, associated operational and economic considerations make implementation of these processes unsustainable. Further studies are necessary to resolve the entry routes of GCs compounds into the surface water or drinking water permanently as well as employ sustainable detection and removal technologies.
Healthy aquatic environment is crucial for preserving aquatic lives in surface waters. Increasing industrial or agricultural discharge or run-off can pollute water leading to unhealthy aquatic environment causing distress in fishes and other aquatic lives. In places with lack of infrastructure and regulatory enforcement, pollution can be particularly challenging to handle. Assignment of an indexing system can be helpful for analyzing pollution pattern in the polluted rivers which can be helpful for remediation purposes and prevention of future pollution. Bangladesh currently does not have any indexing system in place. Assignment of indices in the rivers of Bangladesh can be helpful for remediation of the rivers on a preferential basis as remediation of all the rivers at once will pose challenges with funding and infrastructural allocation. Parameters monitored in the water monitoring stations of ten rivers were extracted from the reports published by the Department of Environment (DOE) of Bangladesh. A water quality index (WQI) was assigned on the rivers across seven years of time period to identify the most polluted rivers. The degree of pollution in the river was in the order of Mayuri > Buriganga > Korotoa > Turag > Shitalakhya > Surma > Halda > Dhaleshwari > Mathavanga > Brahmaputra based on the WQI analysis. Among the ten rivers, only Mathavanga and Brahmaputra were in good condition. The most polluted rivers were located in areas with manufacturing, textile etc. industries. Hence, monitoring of industrial discharge intro the rivers and regulatory enforcement is crucial for the prevention of pollution in rivers. In addition to regulatory enforcement, adoption of remediation plans and implementation of them is also essential for remediation of the polluted rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.