We have cloned a cDNA coding for a novel steroid receptor co-activator protein termed SRAP from a rat prostate library. Although the nucleotide sequence of the SRAP has 78.2% identity to that of the human steroid receptor RNA activator (SRA), a novel RNA molecule which was reported to act as an RNA transcript without being translated into protein [Lanz, McKenna, Onate, Albrecht, Wong, Tsai, Tsai and O'Malley (1999) Cell 97, 17-27], the cDNA of SRAP is capable of generating a functional protein. Glutathione S-transferase pull-down assays showed that SRAP associates with the partial androgen receptor (AR) protein composed of a DNA-binding domain and an activation function 2. Luciferase assays demonstrated that SRAP enhances the transactivation activity of the AR, the glucocorticoid receptor and the peroxisome proliferator-activated receptor gamma(1) in a ligand-dependent manner. Using a green fluorescent protein (GFP) fusion-protein construct, we demonstrated in vivo translation of the GFP-SRAP fusion protein in HeLa cells co-transfected with pSG5AR and reporter gene in the presence of 5 alpha-dihydrotestosterone (DHT). Co-transfection of the GFP-SRAP fusion protein expression plasmid enhanced the transactivation activity of AR whereas incorporation of mutations in SRAP of the fusion protein resulted in loss of enhancement of the transactivation activity. Northern blot analysis and reverse transcriptase PCR assays showed that SRAP and SRA are expressed in rat and human prostate cancer cell lines respectively. In HeLa cells and the human prostate cancer cells line DU-145, co-transfected with SRAP, the DHT-dependent transactivation activities of AR were not completely inhibited by the anti-androgen flutamide, but the transactivation activities still remained high even in the presence of 5 microM flutamide, suggesting that SRAP may play an important role in enhancing AR activity in prostate cancer.
Although some anti-estrogens have been reported to inhibit the proliferation of prostate cancer cells, few studies on the mechanism by which they suppress the growth of prostate cancer have been reported. We investigated, for the first time, whether anti-estrogens modulate the transactivation activity of the androgen receptor (AR) in prostate cancer cells. In DU-145 cells transfected with AR, the transactivation activity of AR was inhibited by tamoxifen and toremifene, even in the presence of 10 nM of DHT. On the other hand, in LNCaP cells having an endogenous AR mutation at codon 877, the activity of AR was suppressed by faslodex in the presence of 10 nM DHT, whereas it was not inhibited by tamoxifen nor toremifene. In PC-3 cells, both the cell growth and the AR activity were remarkably inhibited by tamoxifen at 50 microM. Faslodex and toremifene inhibited AR activity to some extent, but they seemed to function as agonists at higher concentrations. In PC-3 cells, the inhibition of cell growth by flutamide, faslodex and toremifene was much less than their suppression of AR activity. We also demonstrated that a synthetic estrogen diethylstilbestrol and progesterone-related drugs such as chlormadinone acetate and allylestrenol dose-dependently inhibited the activity of AR in DU-145 and PC-3 cells. These results highlight the anti-androgenic aspect of anti-estrogens and estrogens in regard to the AR-mediated transcription of the relevant genes in prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.