Highlights d A database combining genomic information and chromatin profiles for Marchantia d Correlations between chromatin marks and transcription are conserved in land plants d A significant portion of constitutive heterochromatin is marked by H3K27me3 d Insights into the evolution of TAD organization in plants
Bryophytes (liverworts, hornworts and mosses) comprise the three earliest diverging lineages of land plants (embryophytes). Marchantia polymorpha, a complex thalloid Marchantiopsida liverwort that has been developed into a model genetic system, occupies a key phylogenetic position. Therefore, M. polymorpha is useful in studies aiming to elucidate the evolution of gene regulation mechanisms in plants. In this study, we used computational, transcriptomic, small RNA and degradome analyses to characterize microRNA (miRNA)-mediated pathways of gene regulation in M. polymorpha. The data have been integrated into the open access ContigViews-miRNA platform for further reference. In addition to core components of the miRNA pathway, 129 unique miRNA sequences, 11 of which could be classified into seven miRNA families that are conserved in embryophytes (miR166a, miR390, miR529c, miR171-3p, miR408a, miR160 and miR319a), were identified. A combination of computational and degradome analyses allowed us to identify and experimentally validate 249 targets. In some cases, the target genes are orthologous to those of other embryophytes, but in other cases, the conserved miRNAs target either paralogs or members of different gene families. In addition, the newly discovered Mpo-miR11707.1 and Mpo-miR11707.2 are generated from a common precursor and target MpARGONAUTE1 (LW1759). Two other newly discovered miRNAs, Mpo-miR11687.1 and Mpo-miR11681.1, target the MADS-box transcription factors MpMADS1 and MpMADS2, respectively. Interestingly, one of the pentatricopeptide repeat (PPR) gene family members, MpPPR_66 (LW9825), the protein products of which are generally involved in various steps of RNA metabolism, has a long stem–loop transcript that can generate Mpo-miR11692.1 to autoregulate MpPPR_66 (LW9825) mRNA. This study provides a foundation for further investigations of the RNA-mediated silencing mechanism in M. polymorpha as well as of the evolution of this gene silencing pathway in embryophytes.
A plethora of developmental and physiological processes in land plants is influenced by auxin, to a large extent via alterations in gene expression by AUXIN RESPONSE FACTORs (ARFs). The canonical auxin transcriptional response system is a land plant innovation, however, charophycean algae possess orthologues of at least some classes of ARF and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, suggesting that elements of the canonical land plant system existed in an ancestral alga. We reconstructed the phylogenetic relationships between streptophyte ARF and AUX/IAA genes and functionally characterized the solitary class C ARF, MpARF3, in Marchantia polymorpha. Phylogenetic analyses indicate that multiple ARF classes, including class C ARFs, existed in an ancestral alga. Loss- and gain-of-function MpARF3 alleles result in pleiotropic effects in the gametophyte, with MpARF3 inhibiting differentiation and developmental transitions in multiple stages of the life cycle. Although loss-of-function Mparf3 and Mpmir160 alleles respond to exogenous auxin treatments, strong miR-resistant MpARF3 alleles are auxin-insensitive, suggesting that class C ARFs act in a context-dependent fashion. We conclude that two modules independently evolved to regulate a pre-existing ARF transcriptional network. Whereas the auxin-TIR1-AUX/IAA pathway evolved to repress class A/B ARF activity, miR160 evolved to repress class C ARFs in a dynamic fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.