Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heterogeneity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam's Razor to avoid over-fitting. We test the procedure rigorously using simulated trajectories for which the underlying physical process is known, demonstrating that it chooses the simplest physical model that explains the observed data. Further, we show that computed model probabilities provide a reliability test for the downstream biological interpretation of associated parameter values. We subsequently illustrate the broad utility of the approach by applying it to disparate biological systems including experimental particle trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety of complex motions. This automated and objective Bayesian framework easily scales to large numbers of particle trajectories, making it ideal for classifying the complex motion of large numbers of single molecules and cells from high-throughput screens, as well as single-cell-, tissue-, and organism-level studies.
We report quantitative label-free imaging with phase and polarization (QLIPP) for simultaneous measurement of density, anisotropy, and orientation in unlabeled live cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract orientation in prenatal human brain tissue sections that are not visible using brightfield imaging. We report a variant of UNet architecture, multi-channel 2.5D U-Net, for computationally efficient prediction of fluorescence images in three dimensions and over large fields of view. Further, we develop data normalization methods for accurate prediction of myelin distribution over large brain regions. We show that experimental defects in labeling the human tissue can be rescued with quantitative label-free imaging and neural network model. We anticipate that the proposed method will enable new studies of architectural order at spatial scales ranging from organelles to tissue.
Synapses contain hundreds of distinct proteins whose heterogeneous expression levels are determinants of synaptic plasticity and signal transmission relevant to a range of diseases. Here, we use diffusible nucleic acid imaging probes to profile neuronal synapses using multiplexed confocal and super-resolution microscopy. Confocal imaging is performed using high-affinity locked nucleic acid imaging probes that stably yet reversibly bind to oligonucleotides conjugated to antibodies and peptides. Super-resolution PAINT imaging of the same targets is performed using low-affinity DNA imaging probes to resolve nanometer-scale synaptic protein organization across nine distinct protein targets. Our approach enables the quantitative analysis of thousands of synapses in neuronal culture to identify putative synaptic sub-types and co-localization patterns from one dozen proteins. Application to characterize synaptic reorganization following neuronal activity blockade reveals coordinated upregulation of the post-synaptic proteins PSD-95, SHANK3 and Homer-1b/c, as well as increased correlation between synaptic markers in the active and synaptic vesicle zones.
Fluorescence correlation spectroscopy (FCS) is a powerful approach to characterizing the binding and transport dynamics of macromolecules. The unbiased interpretation of FCS data relies on the evaluation of multiple competing hypotheses to describe an underlying physical process under study, which is typically unknown a priori. Bayesian inference provides a convenient framework for this evaluation based on the temporal autocorrelation function (TACF), as previously shown theoretically using model TACF curves (He, J., Guo, S., and Bathe, M. Anal. Chem. 2012, 84). Here, we apply this procedure to simulated and experimentally measured photon-count traces analyzed using a multitau correlator, which results in complex noise properties in TACF curves that cannot be modeled easily. As a critical component of our technique, we develop two means of estimating the noise in TACF curves based either on multiple independent TACF curves themselves or a single raw underlying intensity trace, including a general procedure to ensure that independent, uncorrelated samples are used in the latter approach. Using these noise definitions, we demonstrate that the Bayesian approach selects the simplest hypothesis that describes the FCS data based on sampling and signal limitations, naturally avoiding overfitting. Further, we show that model probabilities computed using the Bayesian approach provide a reliability test for the downstream interpretation of model parameter values estimated from FCS data. Our procedure is generally applicable to FCS and image correlation spectroscopy and therefore provides an important advance in the application of these methods to the quantitative biophysical investigation of complex analytical and biological systems.
Statherin is an active inhibitor of calcium phosphate precipitation in the oral cavity. For many studies of the interaction between statherin and hydroxyapatite (HAp), the samples are prepared by a direct mixing of statherin or its fragment with well-crystalline HAp crystals. In this work, the HAp sample is precipitated in the presence of peptide fragment derived from the N-terminal 15 amino acids of statherin (SN-15). The in situ prepared HAp crystallites are nanosized, leading to a significant increase of the peptide amount adsorbed on the HAp surface. The enhancement in NMR sensitivity allows, for the first time, the measurement of a two-dimensional 13C-13C correlation spectrum for a 13C uniformly labeled peptide sample adsorbed on mineral surface. The measurement time is about 18.5 h at a field strength of 7.05 T. Preliminary results suggest that there may exist two different mechanisms for the interaction between SN-15 and HAp. In addition to the one which will cause a conformational change near the N-terminal, SN-15 may also be absorbed on the HAp surface by simple electrostatic interaction, without any significant conformational changes of the peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.