It is commonly recognized that software development is highly unpredictable and software quality may not be easily enhanced after software product is finished. During the software development life cycle (SDLC), project managers have to solve many technical and management issues, such as high failure rate, cost over‐run, low quality, and late delivery. Consequently, in order to produce robust and reliable software product(s) on time and within budget, project managers and developers have to appropriately allocate limited time, manpower, development, and testing effort. In the past, the distribution of testing effort or manpower can typically be described by the Weibull or Rayleigh model. Practically, it should be noticed that development environments or methods could be changed due to some reasons. Thus, when we plan to perform software reliability modeling and prediction, these changes or variations occurring in the development process have to be taken into consideration. In this paper, we will study how to use the Parr‐curve model with multiple change‐points to depict the consumption of testing effort and how to perform further software reliability analysis. Some mathematical properties of proposed model will be given and discussed. The applicability and performance of our proposed model will be demonstrated and assessed through real software failure data. Experimental results are analyzed and compared with other existing models to show that our proposed model gives better predictions. Finally, an optimal software release policy based on cost‐reliability criteria is proposed and studied. The main purpose is aimed at minimizing the total cost of software development when a reliability objective is given.
It is commonly recognized that software development is highly unpredictable and software quality may not be easily enhanced after software product is finished. During the software development life cycle (SDLC), project managers have to solve many technical and management issues, such as high failure rate, cost over-run, low quality, late delivery, etc. Consequently, in order to produce robust and reliable software product(s) on time and within budget, project managers and developers have to appropriately allocate limited development-and testing-effort and time. In the past, the distribution of testing-effort or manpower can typically be described by the Weibull or Rayleigh model. Practically, it should be noticed that development environments or methods could change due to some reasons. Thus when we plan to perform software reliability modeling and prediction, these changes or variations occurring in the development process have to be taken into consideration. In this paper, we will study how to use the Parr-curve model with multiple change-points to depict the consumption of testing-effort and how to perform further software reliability analysis. The applicability and performance of our proposed model will be demonstrated and assessed through real software failure data. Experimental results are analyzed and compared with other existing models to show that our proposed model gives better predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.