Human mesenchymal stem cells (hMSCs) are multipotent cells, and have been expanded and differentiated into several kinds of mesodermal tissue in vitro. In order to promote bone repair, enhancement of the proliferation and differentiation of hMSCs into osteoblasts in vitro is recommended prior to therapeutic delivery. However, for clinical applications, it is still unclear which method is more advanced for tissue engineering: to transplant undifferentiated cells or partially differentiated stem cells. Therefore, the present study aimed to investigate how osteogenic differentiation medium (ODM) affects hMSCs cultured in a 3D scaffold using a radial-flow bioreactor (RFB) besides cell growth medium (GM). To produce precultured sheets, the hMSCs were first seeded onto type 1 collagen sheets and incubated for 12 h, after which they were placed in the RFB for scaffold fabrication. The culture medium was circulated at 3 mL/min and the cells dynamically cultured for 1 week at 37 °C. Static cultivation in a culture dish was also carried out. Cell proliferations were evaluated by histological analysis and DNA-based cell count. Alkaline phosphatase (ALP) activity, immunocytochemical analysis with BMP-2, and osteopontin on the hMSCs in the collagen scaffold were performed. After 14 days of ODM culture, a significant increase in cell number and a higher density of cell distribution in the scaffold were observed after both static and dynamic cultivation compared to GM culture. A significant increase in ALP activity after 14 days of ODM was recognized in dynamic cultivation compared with that of static cultivation. Cells that BMP-2 expressed were frequently observed after 14 days in dynamic culture compared with other conditions, and the expression of osteopontin was confirmed in dynamic cultivation after both 7 days and 14 days. The results of this study revealed that both the proliferation and bone differentiation of hMSCs in 3D culture by RFB were accelerated by culture in osteogenic differentiation medium, suggesting an advantageous future clinical applications for RFB cell culture and cell transplantation for tissue engineering.
The purpose of the present study was to determine the relationship between crosssectional design and fracture load using a static load bearing test in yttria-stabilized tetragonal zirconia polycrystal ceramic frameworks on a molar fixed partial denture. The test framework was designed as a 3-unit bridge with two abutment teeth at the second premolar and second molar of the mandible. The cross-sectional area of the connector was 9.0, 7.0, or 5.0 mm 2 . In terms of shape, the cross-section was either circular or oval, with a height/width ratio of 1:1, 3:4, or 2:3. For each of the 9 combinations of crosssectional area and shape, 5 frameworks were prepared (45 in total). Frameworks were cemented to a metallic test model with adhesive resin cement. After fracture load was measured, the percentage of fracture sites was determined and the fracture surfaces observed. In terms of cross-sectional area, there was a statistically significant difference in fracture load between 9.0, 7.0, and 5.0 mm 2 . No significant difference in fracture load was observed between any two shapes of connector (pϾ0.05). The fracture load of all frameworks with a cross-sectional area of 9.0 or 7.0 mm 2 was over 880 N, which was recognized as parafunctional occlusal force. Fracture occurred at the distal connector in 82.2% of all frameworks on average. Fracture load decreased as cross-sectional area of the connector became smaller. The cross-sectional shape used in the present study was less influential on fracture load. It appears to be clinical possible to apply a connector with a crosssectional area of 7.0 mm 2 . Fracture often occurred at the distal connector between the pontic and the abutment, corresponding to the second molar.
The purpose of this study was to conduct static load-bearing tests on 4-unit Y-TZP all-ceramic fixed partial denture (FPD) frameworks with different cross-sectional areas and forms to evaluate the influence of connector design on fracture load. Each of the central, mesial and distal connectors was prepared with one of 2 different cross-sectional areas and one of 3 different forms (one circular and two oval forms) to give a total of 18 designs. Five frameworks were then prepared for each design, making a total of 90. Each framework was cemented to the test model with glass ionomer cement. Fracture load was measured with a universal testing machine at a cross-head speed of 1.0 mm/min. A three-way ANOVA revealed significant differences in fracture load depending on cross-sectional area, central connector cross-sectional form, or mesial/distal connector cross-sectional form (p<0.01). No interaction was observed, however, between any two connector design elements. The results of a Tukey analysis revealed a significant difference between the two connector cross-sectional areas investigated, with an increase in connector cross-sectional area resulting in an increase in fracture load. Fracture load decreased as the height of the mesial or distal connector decreased. Fracture load was significantly higher in frameworks in which the height of the central connector was greater than that of the distal or mesial connector. In conclusion, these results suggest that sufficient height needs to be maintained in the mesial/distal connector to secure a high fracture load in zirconia 4-unit all-ceramic FPDs. Moreover, even when this is not possible, a high fracture load may still be obtained by making the height of the central connector as great as possible. Furthermore, extending the connector cross-sectional area is effective in increasing fracture load.
The purpose of the present study was to evaluate stress distribution by finite element analysis in an accurate model simulating trabecular bone using micro-CT. Dentulous and edentulous maxillary jaws of Japanese adult cadavers were used (5 sides each; total, 10 sides). Imaging was performed using a micro-CT, followed by reconstruction with 3-D images. Finite element analysis models were developed using the maxilla with average bone morphometry. A load corresponding to occlusal force was applied in different loading conditions, followed by evaluation of stress distribution. In dentulous maxillas, a load was applied in the dental axis direction to the first molar crown (LD). In edentulous maxillas, a load was applied directly to a circular area 4mm in diameter (LER0) to a cylinder 4 mm in diameter and 10mm in height (LER10) corresponding to the first molar area. Stress was concentrated in cortical bone around the first molar, trabecular bone and cortical bone at the maxillary sinus base in LD, cortical bone of the alveolar ridge in LER0, and trabecular bone around the cylinder and cortical bone at the maxillary sinus base in LER10. LER0 showed a stress distribution markedly different from that in LD. Compared with LER0, LER10 showed a stress distribution close to that in LD. A model simulating trabecular bone allows a more accurate evaluation of stress distribution.
The aim of this study was to investigate the effects of occlusal form of abutment, occlusal thickness of monolithic zirconia crowns (MZC), and cement type on the fracture load of MZC. Abutments were prepared with 2 types of occlusal forms: groove-type and flat-type. These were designed so that thickness at the central fissure region of MZC was 0.3, 0.5, or 0.7 mm. Glass ionomer cement and resin cement were used to lute MZC to their corresponding abutment. Fracture load was determined using a universal testing machine. As a result, groove-type abutment had lower fracture load compared to flat-type abutment; however, the decline in strength was smaller when resin cement was used. Additionally, specimens with larger occlusal thickness had greater fracture load regardless of groove or cement-type. The fracture of MZC occurred on the central fissure region of MZC except for 0.7 mm groove-type MZC luted with resin cement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.