This article focuses on the use of multiobjective particle swarm optimization algorithm in combination with the thermohydrodynamic governing equations of fluid film (i.e. momentum and energy equations) in developing an efficient design method to optimize hydrodynamic partial pad journal bearings, for the first time. The governing equations are solved by using the central difference technique with a successive over relaxation scheme. In the simulation, the lubricant viscosity is changed with the temperature variation in whole fluid film. In this problem, the bearing power loss, the minimum oil film thickness, and the maximum oil temperature are selected as three objective functions and the radial clearance and length-to-diameter ratio are considered as two important design variables. The results of the objective functions are presented in tabular and Pareto-front curves. Further, the effect of bearing speed, bearing load, and inlet oil temperature on the mentioned objective functions is illustrated.
In this paper, multi-objective particle swarm optimization method is developed for optimizing thermo-hydrodynamic journal bearings. This paper focuses on the use of multi-objective particle swarm optimization algorithm with a combination of the thermal hydrodynamic governing equations of the fluid film (i.e. momentum and energy equations) to optimize hydrodynamic partial pad journal bearings and compare with other articles. The governing equations are solved by the central difference method with a successive over-relaxation scheme and the backward difference with an iterative technique. In the paper, the lubricant viscosity changes with the temperature variation in whole fluid film. In this optimization, the bearing power loss, the minimum oil film thickness, and the maximum oil temperature are considered as objective functions and the radial clearance and length to diameter ratio are selected as design variables. The results of the objective functions are compared to other articles. Also, this study discusses the entropy and availability of two concentric cylinders with low curvature and constant wall temperature. Calculations showed that by increasing the Eckert number, the availability increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.