BackgroundMitochondrial dysfunction, oxidative stress and their interplay are core pathological features of Parkinson’s disease. In dopaminergic neurons, monoamines and their metabolites provide an additional source of reactive free radicals during their breakdown by monoamine oxidase or auto-oxidation. Moreover, mitochondrial dysfunction and oxidative stress have a supraadditive impact on the pathological, cytoplasmic accumulation of dopamine and its subsequent release. Here we report the effects of a novel series of potent and selective MAO-B inhibitory (hetero)arylalkenylpropargylamine compounds having protective properties against the supraadditive effect of mitochondrial dysfunction and oxidative stress.ResultsThe (hetero)arylalkenylpropargylamines were tested in vitro, on acute rat striatal slices, pretreated with the complex I inhibitor rotenone and in vivo, using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced acute, subchronic, and chronic experimental models of Parkinson’s disease in mice. The compounds exhibited consistent protective effects against i) in vitro oxidative stress induced pathological dopamine release and the formation of toxic dopamine quinone in the rat striatum and rescued tyrosine hydroxylase positive neurons in the substantia nigra after rotenone treatment; ii) in vivo MPTP-induced striatal dopamine depletion and motor dysfunction in mice using acute and subchronic, delayed application protocols. One compound (SZV558) was also examined and proved to be protective in a chronic mouse model of MPTP plus probenecid (MPTPp) administration, which induces a progressive loss of nigrostriatal dopaminergic neurons.ConclusionsSimultaneous inhibition of MAO-B and oxidative stress induced pathological dopamine release by the novel propargylamines is protective in animal models and seems a plausible strategy to combat Parkinson’s disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s13024-015-0067-y) contains supplementary material, which is available to authorized users.
Authors studied the effect of sterigmatocystin from infected corn (STC), purified sterigmatocystin (PSTC), and aflatoxin B1 from infected corn (AFB1) on lipid peroxidation and glutathione redox parameters, including the expression of their encoding genes in a sub-chronic (14 days) trial. A total of 144 three-week-old cockerels was divided into four experimental groups (n = 36 in each). Control feed was contaminated with STC or PSTC (1590 µg STC/kg or 1570.5 µg STC/kg feed), or with AFB1 (149.1 µg AFB1/kg feed). Six birds from each group were sampled at day 1, 2, 3, 7 and 14 of mycotoxin exposure. As parameters of lipid peroxidation, conjugated dienes (CD) and trienes (CT) were measured in the liver, while malondialdehyde (MDA) concentration was determined in blood plasma, red blood cell hemolysate and liver. Reduced glutathione (GSH) concentration and glutathione peroxidase (GPx) activity were determined in the same samples, and expression of glutathione peroxidase 4 (GPX4), glutathione synthetase (GSS) and glutathione reductase (GSR) genes was measured by RT-PCR in the liver. STC, PSTC or AFB1 caused a slight, but not significant, increase in CD and CT levels; however, in the case of MDA, no increase was found in the liver. Glutathione redox system was activated in the liver by AFB1, but less markedly by STC/PSTC. PSTC and AFB1 resulted in a higher expression of GPX4, while GSS expression was down-regulated by AFB1 on day 1, but up-regulated by STC on day 2 and by both mycotoxins on day 7. However, on day 14, GSS expression was down-regulated by PSTC. Expression of GSR was low on day 1 in AFB1 and PSTC groups, but later it was up-regulated by AFB1. The observed changes regarding gene expression strengthen the hypothesis that the mild oxidative stress, caused by the applied STC doses, activates the glutathione redox system of broiler chickens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.