This study used live Azolla pinnata (AP) to remediate rhodamine B (RB) from aqueous solutions via the phytoextraction method, and machine learning algorithms such as artificial neural networks and random forests were used as predictive models. The pH was found to have a major influence on the phytoextraction process, and the AP dosage can change the pH of the aqueous solution. The optimum condition for the phytoextraction of RB (initial dye concentration at 10 ppm) is at pH 3.0 with a plant dosage of 0.4 g, resulting in removal efficiency as high as 76%. The growth estimation (relative frond number) indicates that AP can tolerate RB concentration of as high as 20 mg L −1 , and the estimations from the pigment studies showed that the exposure of AP to RB causes AP to produce higher concentrations of plant pigments than the control, which hinted the possibility of AP using RB and its intermediates for growth.
The title molecule, featuring an intramolecular O—H⋯O hydrogen bond, is non-planar as seen in the dihedral angle between the pyridyl rings of 7.45 (7)°. In the crystal, supramolecular chains are formed via π(pyridin-2-yl)–π(pyridin-3-yl) interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.