Abstract-Mammograms are X-ray images of the breast which are used to detect breast cancer. When mammograms are analyzed by computer, the pectoral muscle should preferably be excluded from processing intended for the breast tissue. For this and other reasons, it is important to identify and segment out the pectoral muscle. In this paper, a new, adaptive algorithm is proposed to automatically extract the pectoral muscle on digitized mammograms; it uses knowledge about the position and shape of the pectoral muscle on mediolateral oblique views. The pectoral edge is first estimated by a straight line which is validated for correctness of location and orientation. This estimate is then refined using iterative "cliff detection" to delineate the pectoral margin more accurately. Finally, an enclosed region, representing the pectoral muscle, is generated as a segmentation mask. The algorithm was found to be robust to the large variations in appearance of pectoral edges, to dense overlapping glandular tissue, and to artifacts like sticky tape. The algorithm has been applied to the entire Mammographic Image Analysis Society (MIAS) database of 322 images. The segmentation results were evaluated by two expert mammographic radiologists, who rated 83.9% of the curve segmentations to be adequate or better.
Abstract-Mammograms are X-ray images of the breast which are used to detect breast cancer. When mammograms are analyzed by computer, the pectoral muscle should preferably be excluded from processing intended for the breast tissue. For this and other reasons, it is important to identify and segment out the pectoral muscle. In this paper, a new, adaptive algorithm is proposed to automatically extract the pectoral muscle on digitized mammograms; it uses knowledge about the position and shape of the pectoral muscle on mediolateral oblique views. The pectoral edge is first estimated by a straight line which is validated for correctness of location and orientation. This estimate is then refined using iterative "cliff detection" to delineate the pectoral margin more accurately. Finally, an enclosed region, representing the pectoral muscle, is generated as a segmentation mask. The algorithm was found to be robust to the large variations in appearance of pectoral edges, to dense overlapping glandular tissue, and to artifacts like sticky tape. The algorithm has been applied to the entire Mammographic Image Analysis Society (MIAS) database of 322 images. The segmentation results were evaluated by two expert mammographic radiologists, who rated 83.9% of the curve segmentations to be adequate or better.
Mammograms arc X-ray images ofthe compressed brcast and arc widcly used for early detection of brcast cancer. A mammogram must he of sufficient quality for the radiologist to dctcct lesions or other abnormalities with high Scnsitivity and specificity. In this paper, soinc algorithms arc prcscnted for thc automatic assessment of the quality of positioning on mediolatcral oblique (MLO) view mammograms. Anatomic features. including thc brcast border, nipple location and pectoral margin, were first extractcd from each image. Then several quality criteria, including breast tissuc exclusion, nipple in profile, inclusion of inframaininary Told, and positioning of the pectoral muscle, were used to assess the adequacy ofhreart positioning. The assessment method was tested on 322 digitized mammograms in the MlAS database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.