Dielectric elastomer actuators (DEA), which are capable of muscle-like actuation, have potential to drive insect-inspired flapping-wing robotfly. There have yet been successfully used to drive flapping wings due to various limitations. This paper revisits their use and integration in a thoracic mechanism as either indirect or direct muscles. Three forms of DEA, i.e. folded, rolled, and pre-stretched membrane, were evaluated and integrated in different thoracic mechanisms. The pre-strained membrane of dielectric elastomer was found capable of generating a large rotation. On the other hand, the folded and rolled ones with either no or little pre-strain performed modestly in this flapping-wing application. Pre-strain was found to be important to maximize the actuator performance. In addition, this paper reviewed manufacturing processes for multi-layered DEAs and possibility of introducing pre-strained in the multi-layered layup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.