Wheat is one of the most important crops in Hungary, which represents approximately 20% of the entire agricultural area of the country, and about 40% of cereals. A robust yield method has been improved for estimating and forecasting wheat yield in Hungary in the period of 2003-2015 using normalized difference vegetation index (NDVI) derived from the data of the Moderate Resolution Imaging Spectroradiometer. Estimation was made at the end of June -it is generally the beginning of harvest of winter wheat in Hungary -while the forecasts were performed 1-7 weeks earlier. General yield unified robust reference index (GYURRI) vegetation index was calculated each year using different curve-fitting methods to the NDVI time series. The correlation between GYURRI and country level yield data gave correlation coefficient (r) of 0.985 for the examined 13 years in the case of estimation. Simulating a quasi-operative yield estimation process, 10 years ' (2006-2015) yield data was estimated. The differences between the estimated and actual yield data provided by the Hungarian Central Statistical Office were less than 5%, the average difference was 2.5%. In the case of forecasting, these average differences calculated approximately 2 and 4 weeks before the beginning of harvest season were 4.5% and 6.8%, respectively. We also tested the yield estimation procedure for smaller areas, for the 19 counties (Nomenclature of Territorial Units for Statistics-3 level) of Hungary. We found that, the relationship between GYURRI and the county level yield data had r of 0.894 for the years 2003-2014, and by simulating the quasi-operative forecast for 2015, the resulting 19 county average yield values differed from the actual yield as much as 8.7% in average.
The signal analyzer and sampler (SAS) experiment was placed on the Active spacecraft as a collaborative effort between the Eötvös University (Budapest), the Technical University of Budapest, and IZMIRAN (Moscow). The scientific objective of the experiment was to study whistler/VLF ducted propagation, VLF duct structure, and the hyperfine structure of whistlers. Digitally sampled waveforms of several field components were transmitted in real time by the SAS telemetry system at 460.4 MHz. For the transmission 900‐Hz wide bands were selected between 0.5 and 21.5 kHz or a single 5 kHz wide band was transmitted. Data were received in Budapest, Hungary and at Wallops Island, Virginia. Although the obtained data were processed for various purposes, here some results concerning the hyperfine structure of whistlers are presented. The studied whistlers, recorded as several pairs of closely spaced traces (doublets), were interpreted as ducted whistlers escaping at a high altitude from a single or two closely spaced narrow ducts and reaching the satellite directly from above or after reflection from below. The whistler traces were processed by a sophisticated matched filter technique which enabled us to obtain very high resolution dynamic (frequency‐time‐amplitude) spectra. The hyperfine structure of traces revealed by this technique demonstrates the complexity of whistler propagation. The observed splitting of traces may be explained, for example, in terms of a number of guided modes (waveguide mode splitting) or by the superposition of closely spaced ducting structures (duct splitting).
A saját fejlesztésű ImaGeo rendszer terepen, fúrásokban és bányatérségekben is nagy felbontású, digitális földtani dokumentációt és 3D földtani-tektonikai adatfelvételt tesz lehetővé, normál és UV fény megvilágításban egyaránt. A fúrásokban kapott adatok mélyfúrás-geofizikai akusztikus (Borehole televiewer, BHTV) vagy ellenállás (pl. Formation MicroImager, FMI) adatsorok felhasználásával újra orientálhatóak és ezzel részletes földtani elemzések megvalósítása válik lehetővé a valós térben. A rendszer részei a Magszkenner, a Fotórobot és a LIPS (Lézer gerjesztésű plazma spektrométer). Jelen cikk az ImaGeo rendszer módszereinek bemutatása mellett esettanulmányt közöl az Ibafa, Ib–4 fúrás mezozoos rétegsorának magszkenneléses eredményeiről különös tekintettel a Jakabhegyi Homokkő Formáció elemzésére. A Formáció vizsgálatát az adatok 45/13°-os (dőlésirány/dőlésszög) tektonikusan kibillentett helyzetből történt visszabillentés után valósítottuk meg. A magszkennelésből származó szemcseméret, rétegvastagság, dőlésirány és dőlésszög eloszlások vizsgálata alapján a Jakabhegyi Homokkő Formáció harántolt rétegsorát 5 szakaszra lehetett bontani. A szakaszhatárok nem korrelálnak a földtani dokumentáció szakaszainak határaival. A visszabillentett dőlések DDK, D és DNy felé mutatnak, de bizonyos mélységszakaszokban a tisztán Ny-i és K-i irányok is jelentősek. Mindezeket üledékszállítási főirányként értelmezzük. A szállítási irányok a formáció egészét tekintve is széles spektrumon oszlanak el. A rétegvastagság, dőlésirány és dőlésszög adatok ciklicitás elemzését vizuálisan, mintázatok felismerése útján és geomatematikai periodicitás elemzéssel vizsgáltuk. Ezek alapján több, különböző periódushosszúságú (deciméteres, 1, 3 és 8 méteres) ciklust lehetett meghatározni. A ciklusosság megállapítható a lemezvastagságban, a dőlésszögek és a dőlésirányok eloszlásában is. A hosszabb ciklusok leginkább a dőlésirányok eloszlásában mutatkoznak. A dőlésszögekben a vizuális, mintázatokon alapuló és a geomatematikai módszer is a 0,5 m körüli ciklust mutatta ki. A geomatematikai elemzés 2 párhuzamos ciklushosszt mutatott ki a dőlésirányokban és a dőlésszögekben. Ezek 1,3 és ~4,5 m ciklushosszúságú periódusok. A vizuális elemzés feltárt egy mintegy 50 m-es ciklust is, ezt geomatematikai úton nem lehetett igazolni.
Remote sensing-based crop yield estimation methods rely on vegetation indices, which depend on the availability of the number of observations during the year, influencing the value of the derived crop yield. In the present study, a robust yield estimation method was improved for estimating the yield of corn, winter wheat, sunflower, and rapeseed in Hungary for the period 2000–2020 using 16 vegetation indices. Then, meteorological data were used to reduce the differences between the estimated and census yield data. In the case of corn, the best result was obtained using the Green Atmospherically Resistant Vegetation Index, where the correlation between estimated and census data was R2 = 0.888 before and R2 = 0.968 after the meteorological correction. In the case of winter wheat, the Difference Vegetation Index produced the best result with R2 = 0.815 and 0.894 before and after the meteorological correction. For sunflower, these correlation values were 0.730 and 0.880, and for rapeseed, 0.765 and 0.922, respectively. Using the meteorological correction, the average percentage differences between estimated and census data decreased from 7.7% to 3.9%, from 6.7% to 3.9%, from 7.2% to 4.2%, and from 7.8% to 5.1% in the case of corn, winter wheat, sunflower, and rapeseed, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.