Due to their significant biological activity, thiosemicarbazones (TSCs) are promising candidates for anticancer therapy. In part, the efficacy of TSCs is linked to their ability to chelate essential metal ions such as copper and iron. Triapine, the best-studied anticancer TSC, has been tested clinically with promising results in hematological diseases. During the last years, a novel subclass of TSCs with improved anticancer activity was found to induce paraptosis, a recently characterized form of cell death. The aim of this study was to identify structural and chemical properties associated with anticancer activity and paraptosis induction of TSCs.Results: When testing a panel of structurally related TSCs, compounds with nanomolar anticancer activity and paraptosis-inducing properties showed higher copper(II) complex solution stability and a slower reduction rate, which resulted in reduced redox activity. In contrast, TSCs with lower anticancer activity induced higher levels of superoxide that rapidly stimulated superoxide dismutase expression in treated cells, effectively protecting the cells from drug-induced redox stress.Innovation: Consequently, we hypothesize that in case of close Triapine derivatives, intracellular reduction leads to rapid dissociation of intracellularly formed copper complexes. In contrast, TSCs characterized by highly stable, slowly reducible copper(II) complexes are able to reach new intracellular targets such as the ER-resident protein disulfide isomerase. Conclusions:The additional modes of actions observed with highly active TSC derivatives are based on intracellular formation of stable copper complexes, offering a new approach to combat (drug-resistant) cancer cells.
BackgroundHomologous recombination (HR) repair deficiency arising from defects in BRCA1 or BRCA2 is associated with characteristic patterns of somatic mutations. In this genetic study, we ask whether inactivating mutations in further genes of the HR pathway or the DNA damage checkpoint also give rise to somatic mutation patterns that can be used for treatment prediction.ResultsUsing whole genome sequencing of an isogenic knockout cell line panel, we find a universal HR deficiency-specific base substitution signature that is similar to COSMIC signature 3. In contrast, we detect different deletion phenotypes corresponding to specific HR mutants. The inactivation of BRCA2 or PALB2 leads to larger deletions, typically with microhomology, when compared to the disruption of BRCA1, RAD51 paralogs, or RAD54. Comparison with the deletion spectrum of Cas9 cut sites suggests that most spontaneously arising genomic deletions are not the consequence of double-strand breaks. Surprisingly, the inactivation of checkpoint kinases ATM and CHK2 has no mutagenic consequences. Analysis of tumor exomes with biallelic inactivating mutations in the investigated genes confirms the validity of the cell line models. We present a comprehensive analysis of sensitivity of the investigated mutants to 13 therapeutic agents for the purpose of correlating genomic mutagenic phenotypes with drug sensitivity.ConclusionOur results suggest that no single genomic mutational class shows perfect correlation with sensitivity to common treatments, but the contribution of COSMIC signature 3 to base substitutions, or a combined measure of different features, may be reasonably good at predicting platinum and PARP inhibitor sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.