In our study we examined the variability of the essential oil content and composition of chamomile (Matricaria recutita L.) during three years (2005-2007). Twenty-eight populations of wild origin and 4 registered cultivars ('Soroksári 40', 'Lutea', 'Goral' and 'Bona') were evaluated in open field experiments. It could be established that the experimental populations represented different genetic potential for essential oil accumulation and composition. The best populations of wild growing origin from the Somogy-region and four cultivars produced the highest essential oil contents (above 0.6 g/100g) in each year. Additionally, the quality of the characteristic main compound of the oil determining the "chemotype ", according to Schilcher, was found to be stable during the three years period. However, the actual chemosyndroms are significantly influenced by the weather conditions. In the three years' experiment, the moderately warm and relatively wet year of 2006 produced the highest contents of essential oil and also that of its α-bisabolol component. Although bisabolol oxide A also showed a high variability through the years, its direct connection with weather conditions could not be proved. A moderate variability was established for the proportions of chamazulene, and the lowest one for bisabolol-oxide B. Considerable genotype-weather interaction was supposed, especially for the essential oil content and for the ratio of bisabolol-oxide A.
The effects of clary sage (Salvia sclarea L.) oil (CS-oil), and its two main components, linalool (Lol) and linalyl acetate (LA), on cells of the eukaryotic human pathogen yeast Candida albicans were studied. Dynamic and thermodynamic properties of the plasma membrane were investigated by electron paramagnetic resonance (EPR) spectroscopy, with 5-doxylstearic acid (5-SASL) and 16-SASL as spin labels. The monitoring of the head group regions with 5-SASL revealed break-point frequency decrease in a temperature dependent manner of the plasma membrane between 9.55 and 13.15 °C in untreated, in CS-oil-, Lol- and LA-treated membranes. The results suggest a significant increase in fluidity of the treated plasma membranes close to the head groups. Comparison of the results observed with the two spin labels demonstrated that CS-oil and LA induced an increased level of fluidization at both depths of the plasma membrane. Whereas Lol treatment induced a less (1 %) ordered bilayer organization in the superficial regions and an increased (10 %) order of the membrane leaflet in deeper layers. Acute toxicity tests and EPR results indicated that both the apoptotic and the effects exerted on the plasma membrane fluidity depended on the composition and chemical structure of the examined materials. In comparison with the control, treatment with CS-oil, Lol or LA induced 13.0, 12.3 and 26.4 % loss respectively, of the metabolites absorbing at 260 nm, as a biological consequence of the plasma membrane fluidizing effects. Our results confirmed that clary sage oil causes plasma membrane perturbations which leads to cell apoptosis process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.