The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.
Gaussian blurring is a well-established method for image data augmentation: it may generate a large set of images from a small set of pictures for training and testing purposes for Artificial Intelligence (AI) applications. When we apply AI for non-imagelike biological data, hardly any related method exists. Here we introduce the “Newtonian blurring” in human braingraph (or connectome) augmentation: Started from a dataset of 1053 subjects from the public release of the Human Connectome Project, we first repeat a probabilistic weighted braingraph construction algorithm 10 times for describing the connections of distinct cerebral areas, then for every possible set of 7 of these graphs, delete the lower and upper extremes, and average the remaining 7 − 2 = 5 edge-weights for the data of each subject. This way we augment the 1053 graph-set to 120 $$\times $$ × 1053 = 126,360 graphs. In augmentation techniques, it is an important requirement that no artificial additions should be introduced into the dataset. Gaussian blurring and also this Newtonian blurring satisfy this goal. The resulting dataset of 126,360 graphs, each in 5 resolutions (i.e., 631,800 graphs in total), is freely available at the site https://braingraph.org/cms/download-pit-group-connectomes/. Augmenting with Newtonian blurring may also be applicable in other non-image-related fields, where probabilistic processing and data averaging are implemented.
For more than a decade now, we can discover and study thousands of cerebral connections with the application of diffusion magnetic resonance imaging (dMRI) techniques and the accompanying algorithmic workflow. While numerous connectomical results were published enlightening the relation between the braingraph and certain biological, medical, and psychological properties, it is still a great challenge to identify a small number of brain connections closely related to those conditions. In the present contribution, by applying the 1200 Subjects Release of the Human Connectome Project (HCP) and Support Vector Machines, we identify just 102 connections out of the total number of 1950 connections in the 83-vertex graphs of 1064 subjects, which—by a simple linear test—precisely, without any error determine the sex of the subject. Next, we re-scaled the weights of the edges—corresponding to the discovered fibers—to be between 0 and 1, and, very surprisingly, we were able to identify two graph edges out of these 102, such that, if their weights are both 1, then the connectome always belongs to a female subject, independently of the other edges. Similarly, we have identified 3 edges from these 102, whose weights, if two of them are 1 and one is 0, imply that the graph belongs to a male subject—again, independently of the other edges. We call the former 2 edges superfeminine and the first two of the 3 edges supermasculine edges of the human connectome. Even more interestingly, the edge, connecting the right Pars Triangularis and the right Superior Parietal areas, is one of the 2 superfeminine edges, and it is also the third edge, accompanying the two supermasculine connections if its weight is 0; therefore, it is also a “switching” edge. Identifying such edge-sets of distinction is the unprecedented result of this work.
For more than a decade now, we can discover and study thousands of cerebral connections with the application of diffusion magnetic resonance imaging (dMRI) techniques and the accompanying algorithmic workflow. While numerous connectomical results were published enlightening the relation between the braingraph and certain biological, medical, and psychological properties, it is still a great challenge to identify a small number of brain connections, closely related to those conditions. In the present contribution, by applying the 1200 Subjects Release of the Human Connectome Project (HCP), we identify just 102 connections out of the total number of 1950 connections in the 83-vertex graphs of 1065 subjects, which -by a simple linear test -precisely, without any error determine the sex of the subject. Very surprisingly, we were able to identify two graph edges out of these 102, if, whose weights, measured in fiber numbers, are all high, then the connectome always belongs to a female subject, independently of the other edges. Similarly, we have identified 3 edges from these 102, whose weights, if two of them are high and one is low, imply that the graph belongs to a male subject -again, independently of the other edges. We call the former 2 edges superfeminine and the first two of the 3 edges supermasculine edges of the human connectome. Even more interestingly, one of the edges, connecting the right Pars Triangularis and the right Superior Parietal areas, is one of the 2 superfeminine edges, and it is also the third edge, accompanying the two supermasculine connections, if its weight is low; therefore it is also a "switching" connection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.