The proper vehicle-route selection is a key challenge affecting the quality of urban logistics since any delay may cause disasters. This study proposes a novel approach of using symmetry/asymmetry traffic context data and multi-criteria decision analysis to optimize vehicle-route selection as part of urban-logistical planning. The traffic context data are collected from official urban transportation databases and metadata of Google Maps route planning to construct a context-based social network. The traffic features and routing criteria have symmetry/asymmetry properties to influence the decision of path selection. Multi-criteria decision analysis can generate a ranking of candidate paths based on an evaluation of traffic data in context-based social networks to recommend to the deliveryman. The deliveryman can select a reasonable path for delivering products according to the ranking of candidate paths. A case study demonstrates the steps of the proposed approach. Experimental results show that the precision is 79.65%, recall is 80.70%, and F1-score is 80.17%, thus proving the vehicle-route recommendation effectiveness. The contribution of this work is to optimize traffic-routing solutions for improved urban logistics in smart cities. It helps deliverymen send products as soon as possible to customers to retain quality, especially in cold-chain logistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.