Tetradentate bis(pyridyl azolate) chelates are assembled by connecting two bidentate 3-trifluoromethyl-5-(2-pyridyl)azoles at the six position of pyridyl fragment with the tailored spiro-arranged fluorene and/or acridine functionalities. These new chelates were then utilized in synthesizing a series of Pt(II) metal complexes [Pt(Ln)], n = 1-5, from respective chelates L1-L5 and [PtCl2(DMSO)2] in 1,2-dimethoxyethane. The single-crystal X-ray structural analyses were executed on 1, 3, and 5 to reveal the generalized structures and packing arrangement in crystal lattices. Their photophysical properties were measured in both solution and solid state and are discussed in the context of computational analysis. These L1-L5 coordinated Pt(II) species exhibit intense emission, among which complex 5 shows remarkable solvatochromic phosphorescence due to the dominant intraligand charge transfer transition induced by the new bis(pyridyl azolate) chelates. Moreover, because of the higher-lying highest occupied molecular orbital of acridine, complex 5 can be considered as a novel bipolar phosphor. Successful fabrication of blue and white organic light-emitting diodes (OLEDs) using Pt(II) complexes 3 and 5 as the phosphorescent dopants are reported. In particular, blue OLEDs with 5 demonstrated peak efficiencies of 15.3% (36.3 cd/A, 38.0 lm/W), and CIE values of (0.190, 0.342) in a double-emitting layer structure. Furthermore, a red-emitting Os(II) complex and 5 were used to fabricate warm-white OLEDs to achieve peak external quantum efficiency, luminance efficiency, and power efficiency values as high as 12.7%, 22.5 cd/A, and 22.1 lm/W, respectively.
Bipolar disorder (BD) is a major psychiatric disorder that is easily misdiagnosed. Patient adherence to a treatment regimen is of utmost importance for successful outcomes in BD. Several trials of antipsychotics suggested that depot antipsychotics, including long-acting first- and second-generation agents, are effective in preventing non-adherence, partial adherence, and in reducing relapse in BD. Various long-acting injectable (LAI) antipsychotics are available, including fluphenazine decanoate, haloperidol decanoate, olanzapine pamoate, risperidone microspheres, paliperidone palmitate, and aripiprazole monohydrate. Due to the increasing number of BD patients receiving LAI antipsychotics, treatment guidelines have been developed. However, the clinical applicability of LAI antipsychotics remains a global cause for concern, particularly in Asian countries. Expert physicians from Taiwan participated in a consensus meeting, which was held to review key areas based on both current literature and clinical practice. The purpose of this meeting was to generate a practical and implementable set of recommendations for LAI antipsychotic use to treat BD; target patient groups, dosage, administration, and adverse effects were considered. Experts recommended using LAI antipsychotics in patients with schizophrenia, rapid cycling BD, BD I, and bipolar-type schizoaffective disorder. LAI antipsychotic use was recommended in BD patients with the following characteristics: multiple episodes and low adherence; seldom yet serious episodes; low adherence potential per a physician’s clinical judgment; preference for injectable agents over oral agents; and multiple oral agent users still experiencing residual symptoms.
A lithium carbonate-based bi-layered electron injection layer was introduced into inverted organic light-emitting diodes (OLEDs) to reduce operation voltages and achieve carrier balance. Ultraviolet photoemission spectroscopy was used to confirm the existence of an interfacial dipole between the organic and lithium carbonate layers, which is a dominating factor related to the device performance. The respective maximum efficiencies of 15.9%, 16.9%, and 8.4% were achieved for blue, green, and red phosphorescent inverted OLEDs with identical architectures, indicating that carrier balance was easily obtained. Moreover, adoption of this sophisticated electron injection layer design resulted in respective turn on voltages of only 3.4 V, 3.2 V, and 3.2 V. Furthermore, the inverted OLEDs equipped with silicon dioxide nanoparticle based light-extraction films achieved an approximately 1.3 fold efficiency improvement over pristine devices due to the low refractive index of the silicon dioxide nanoparticles along with an effective scattering function. The blue, green, and red inverted OLEDs with the nanocomposite layer achieved respective peak efficiencies of 20.9%, 21.3%, and 10.1%.
We propose a novel transparent conductive oxide constructed by doping molybdenum into gallium zinc oxide (GZO).
Recently, exciplex had drawn attention because of its potential for efficient electroluminescence or for use as a host in organic light-emitting diodes (OLEDs). In this study, four kinds of hole transport material/electron transport material combinations were examined to verify the formation of exciplex and the corresponding energy bandgaps. We successfully demonstrated that the combination of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 3,5,3′,5′-tetra(m-pyrid-3-yl)phenyl[1,1′]biphenyl (BP4mPy) could form a stable exciplex emission with an adequate energy gap. Using exciplex as a host in red, green, and blue phosphorescent OLEDs with an identical trilayer architecture enabled effective energy transfer from exciplex to emitters, achieving corresponding efficiencies of 8.8, 14.1, and 15.8%. A maximum efficiency of 11.3% and stable emission was obtained in white OLEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.