Stereotactic radiosurgery (SRS), which delivers high doses of irradiation in a single or few shots to small targets, has been a standard of care for brain metastases. While very effective, SRS currently requires manually intensive delineation of tumors. In this work, we present a deep learning approach for automated detection and segmentation of brain metastases using multimodal imaging and ensemble neural networks. In order to address small and multiple brain metastases, we further propose a volume-aware Dice loss which optimizes model performance using the information of lesion size. This work surpasses current benchmark levels and demonstrates a reliable AI-assisted system for SRS treatment planning for multiple brain metastases.
RationaleMultiple clinical trials support the effectiveness of cardiac resynchronization therapy (CRT); however, optimal patient selection remains challenging due to substantial treatment heterogeneity among patients who meet the clinical practice guidelines.ObjectiveTo apply machine learning to create an algorithm that predicts CRT outcome using electronic health record (EHR) data avaible before the procedure.Methods and resultsWe applied machine learning and natural language processing to the EHR of 990 patients who received CRT at two academic hospitals between 2004–2015. The primary outcome was reduced CRT benefit, defined as <0% improvement in left ventricular ejection fraction (LVEF) 6–18 months post-procedure or death by 18 months. Data regarding demographics, laboratory values, medications, clinical characteristics, and past health services utilization were extracted from the EHR available before the CRT procedure. Bigrams (i.e., two-word sequences) were also extracted from the clinical notes using natural language processing. Patients accrued on average 75 clinical notes (SD, 29) before the procedure including data not captured anywhere else in the EHR. A machine learning model was built using 80% of the patient sample (training and validation dataset), and tested on a held-out 20% patient sample (test dataset). Among 990 patients receiving CRT the mean age was 71.6 (SD, 11.8), 78.1% were male, 87.2% non-Hispanic white, and the mean baseline LVEF was 24.8% (SD, 7.69). Out of 990 patients, 403 (40.7%) were identified as having a reduced benefit from the CRT device (<0% LVEF improvement in 25.2%, death by 18 months in 15.6%). The final model identified 26% of these patients at a positive predictive value of 79% (model performance: Fβ (β = 0.1): 77%; recall 0.26; precision 0.79; accuracy 0.65).ConclusionsA machine learning model that leveraged readily available EHR data and clinical notes identified a subset of CRT patients who may not benefit from CRT before the procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.