Limbal stromal niche cells expressing SC markers can be isolated and expanded to prevent differentiation and maintain clonal growth of limbal epithelial progenitors.
In human corneal epithelium, self-renewal and fate decision of stem cells are highly regulated in a niche microenvironment called palisades of Vogt in the limbus. Herein, we discovered that digestion with dispase, which cleaves off the basement membrane, did not remove the entire basal epithelial progenitor cells. In contrast, digestion with collagenase isolated on cluster consisting of not only entire epithelial progenitor cells but also their closely associated mesenchymal cells because of better preservation of some basement membrane matrix. Collagenase isolated more basal epithelial progenitor cells, which were p63a + and small in the size (8 mm in diameter), and generated significantly more holoclones and meroclones on 3T3 fibroblast feeder layers than dispase. Further, collagenase isolated more small pan-cytokeratin -/p63a -/vimentin + cells with the size as small as 5 mm in diameter and heterogeneously expressing vimentin, Oct4, Sox2, Nanog, Rex1, Nestin, N-cadherin, SSEA4, and CD34. Maintenance of close association between them led to clonal growth in a serumfree, low-calcium medium, whereas disruption of such association by trypsin/EDTA resulted in no clonal growth unless cocultured with 3T3 fibroblast feeder layers. Similarly, on epithelially denuded amniotic membrane, maintenance of such association led to consistent and robust epithelial outgrowth, which was also abolished by trypsin/EDTA. Epithelial outgrowth generated by collagenase-isolated clusters was significantly larger in diameter and its single cells yielded more holoclones on 3T3 fibroblast feeder layers than that from dispase-isolated sheets. This new isolation method can be used for exploring how limbal epithelial stem cells are regulated by their native niche cells.
SummaryContact inhibition ubiquitously exists in non-transformed cells that are in contact with neighboring cells. This phenomenon explains the poor regenerative capacity of in vivo human corneal endothelial cells during aging, injury and surgery. This study demonstrated that the conventional approach of expanding human corneal endothelial cells by disrupting contact inhibition with EDTA followed by bFGF activated canonical Wnt signaling and lost the normal phenotype to endothelial-mesenchymal transition, especially if TGFb1 was added. By contrast, siRNA against p120 catenin (CTNND1) also uniquely promoted proliferation of the endothelial cells by activating trafficking of p120 catenin to the nucleus, thus relieving repression by nuclear Kaiso. This nuclear p120-catenin-Kaiso signaling is associated with activation of RhoA-ROCK signaling, destabilization of microtubules and inhibition of Hippo signaling, but not with activation of Wnt-b-catenin signaling. Consequently, proliferating human corneal endothelial cells maintained a hexagonal shape, with junctional expression of N-cadherin, ZO-1 and Na + /K + -ATPase. Further expansion of human corneal endothelial monolayers with a normal phenotype and a higher density was possible by prolonging treatment with p120 catenin siRNA followed by its withdrawal. This new strategy of perturbing contact inhibition by selective activation of p120-catenin-Kaiso signaling without disrupting adherent junction could be used to engineer surgical grafts containing normal human corneal endothelial cells to meet a global corneal shortage and for endothelial keratoplasties.
In the limbal stroma, cells subjacent to limbal basal epithelial cells serve as niche cells, and generate progenitors with angiogenesis and mesenchymal stem cells potentials. They might partake in angiogenesis and regeneration during corneal wound healing.
Adipose-derived stem cells (ASCs) represent an important source of mesenchymal stem cells for clinical application. During in vitro culture, ASCs quickly lose the expression of transcription factors associated with pluripotency and self-renewal (Sox-2, Oct-4, and Nanog) and CXCR4, the key receptor responsible for stem cell homing. To enhance their therapeutic potential despite in vitro passages, we examined whether ASCs exhibit superior regenerative capacity by expanding them in monolayers following short-term spheroid formation. Spheroid-derived ASCs retained the expression pattern of cell surface markers and adipogenic/osteogenic differentiation capabilities of ASCs constantly cultured in monolayers. However, spheroid-derived ASCs exhibited higher expansion efficiency with less senescence. Moreover, spheroid-derived ASCs expressed significantly higher levels of pluripotency markers, CXCR4, and angiogenic growth factors. Enhanced in vitro migration, associated with the increased expression of matrix metalloproteinases (MMP-9 and MMP-13), was also observed in spheroid-derived ASCs. The enhanced migration and MMP expression could be inhibited by a CXCR4-specific peptide antagonist, AMD3100. Using a murine model with healingimpaired cutaneous wounds, we observed faster healing and enhanced angiogenesis in the wounds treated with spheroid-derived ASCs. Significantly more cellular engraftment of spheroid-derived ASCs in the cutaneous wound tissue was also noted, with evidence of ASC differentiation toward endothelial and epidermal lineages. These findings suggest that short-term spheroid formation of ASCs before monolayer culture enhances their properties of stemness, angiogenesis, and chemotaxis and thereby increases their regenerative potential for therapeutic use. STEM CELLS TRANSLATIONAL MEDICINE 2013;2:584 -594
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.