SummaryThe phenotypes of single-(SKO) and double-knockout (DKO) lines of dihydrofolate reductase-thymidylate synthase (DHFR-TS) of bloodstream Trypanosoma brucei were evaluated in vitro and in vivo. Growth of SKO in vitro is identical to wild-type (WT) cells, whereas DKO has an absolute requirement for thymidine. Removal of thymidine from the medium triggers growth arrest in S phase, associated with gross morphological changes, followed by cell death after 60 h. DKO is unable to infect mice, whereas the virulence of SKO is similar to WT. Normal growth and virulence could be restored by transfection of DKO with T. brucei DHFR-TS, but not with Escherichia coli TS. As pteridine reductase (PTR1) levels are unchanged in SKO and DKO cells, PTR1 is not able to compensate for loss of DHFR activity. Drugs such as raltitrexed or methotrexate with structural similarity to folic acid are up to 300-fold more potent inhibitors of WT cultured in a novel low-folate medium, unlike hydrophobic antifols such as trimetrexate or pyrimethamine. DKO trypanosomes show reduced sensitivity to these inhibitors ranging from twofold for trimetrexate to >10 000-fold for raltitrexed. These data demonstrate that DHFR-TS is essential for parasite survival and represents a promising target for drug discovery.
SummaryThe outer membrane of Gram-negative bacteria protects the cell against bactericidal substances. Passage of nutrients and waste is assured by outer membrane porins, beta-barrel transmembrane channels. While atomic structures of several porins have been solved, so far little is known on the supramolecular structure of the outer membrane. Here we present the first high-resolution view of a bacterial outer membrane gently purified maintaining remnants of peptidoglycan on the perisplasmic surface. Atomic force microscope images of outer membrane fragments of the size of~50% of the bacterial envelope revealed that outer membrane porins are by far more densely packed than previously assumed. Indeed the outer membrane is a molecular sieve rather than a membrane. Porins cover~70% of the membrane surface and form locally regular lattices. The potential role of exposed aromatic residues in the formation of the supramolecular assembly is discussed. Finally, we present first structural data of the outer membrane porin from the marine Gramnegative bacteria Roseobacter denitrificans, and we perform a sequence alignment with porins of known structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.