In this study, dark chocolates (DCh) containing zinc lactate (ZnL) were enriched with extracts from elderberries (EFrE), elderflowers (EFlE), and chokeberries (ChFrE) to improve their functional properties. Both dried plant extracts and chocolates were analyzed for antioxidant capacity (AC) using four different analytical methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric ion-reducing antioxidant capacity (CUPRAC), and ferric-reducing antioxidant power (FRAP), while total phenolic content (TPC) was determined by Folin–Ciocalteu (F–C) assay. An increase in antioxidant properties of fortified chocolates was found, and the bioaccessibility of their antioxidants was evaluated. The highest AC and TPC were found in ChFrE and chocolate with chokeberries (DCh + ChFrE) before and after simulated in vitro digestion. Bioaccessibility studies indicated that during the simulated digestion the AC of all chocolates reduced significantly, whereas insignificant differences in TPC results were observed between chemical and physiological extracts. Moreover, the influence of plant extracts on physicochemical parameters such as moisture content (MC), fat content (FC), and viscosity of chocolates was estimated. Furthermore, scanning electron microscopy with dispersive energy spectroscopy (SEM-EDS) was used to analyze surface properties and differences in the chemical composition of chocolates without and with additives.
Bioactive compounds present in the powdered leaves of matcha green tea (Camellia sinensis L.) (MGTP) and moringa (Moringa oleifera) (MOLP) seem to be related to health benefits due to their antioxidant properties. The growing accessibility of these powders has led to their being more widely used in food production. The aim of this study was to evaluate the total phenolic content (TPC) and antioxidant capacity (AC) of white chocolate (WCh) supplemented with MGTP and MOLP. AC was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric ion-reducing antioxidant capacity (CUPRAC), and ferric-reducing antioxidant power (FRAP) assays, whereas TPC was determined by the Folin–Ciocalteu (FC) method. Both additives were incorporated at four levels (1, 2, 3 and 4%) in two chocolate processing steps (conching and tempering). Additionally, the amounts of phenolic acids, tocopherols, and carotenoids in WCh samples enriched by MGTP and MOLP were determined to explain their influence on AC. The results showed that the chocolates supplemented with MGTP were characterized by higher antioxidant properties than those with MOLP. In turn, MOLP significantly increased the content of lipophilic antioxidants in chocolates, tocopherols and carotenoids, which also exhibit pro-health effects. Furthermore, the incorporation of these additives during the tempering process was more relevant to the improvement of the antioxidant properties of WCh.
The optimum formulation for wheat flour (WF)-based biscuits containing the rapeseed press cake (RPC)—the primary by-product of rapeseed oil production rich in phenolic compounds and different types of fats (rapeseed oil, margarine and coconut oil)—was estimated using the central composite design (CCD) with two factors and response surface methodology (RSM). Effects of partial substitution of WF for RPC (0–40 g) in a total flour blend (100 g) and fats with various amounts of saturated fatty acids (SAFA = 2.3–24.9 g) on antioxidant capacity (AC) and sensory characteristics (color, odor, texture, flavor, overall acceptability, and purchase intent scores) of the novel biscuits were investigated. Conventional solid (liquid)–liquid extraction and ultrasound-assisted extraction (UAE) were applied to extract total antioxidants from main ingredients used for the preparation of doughs as well as the baked biscuits. The AC of biscuits and their components were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The DPPH results were the highest for the RPC flour (DPPH = 15,358–15,630 μmol Trolox (TE)/100 g) and biscuits containing rapeseed oil and 40 g of RPC flour (DPPH = 7395–10,088 μmol TE/100 g). However, these biscuits had lower sensory scores for each attribute and the lowest purchase intent scores. The quadratic response surfaces were drawn from the mathematical models in order to ensure the good quality of the proposed biscuits with RPC. The DPPH results obtained and the mean sensory scores correlate with the predicted values (R2 = 0.7751–0.9969). The addition of RPC with high antioxidant potential to biscuits and the replacement of margarine or coconut oil by rapeseed oil interfered with their acceptability.
The aim of this study was to optimize the grinding process parameters (mesh size of grinder sieve ), the peripheral velocity of the grinding wheels ), and the storage time of ground ginger rhizome and nutmeg to obtain ethanol and ethanol-water extracts with improved antioxidant properties. The optimal conditions were estimated using response surface methodology (RSM) based on a three-variable Box–Behnken design (BBD) in order to maximize the antioxidant capacity (AC) determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, and the total phenolic content (TPC) was determined by the Folin–Ciocalteu (F–C) method in spice extracts. Additionally, the phenolic acid profiles in extracts from optimized conditions were analyzed using ultra-performance liquid chromatography (UPLC). It was found that the optimal preparation conditions for antioxidant extraction were dependent on the spice source and solvent type. The best antioxidant properties in nutmeg extracts were achieved for = 1.0 mm, = 40–41 Hz and = 7 days, whereas the optimized parameters for ginger extracts were more varied (1.0–2.0 mm, 43–50 Hz and 1–9 days, respectively). The ginger extracts contained 1.5–1.8 times more phenolic acids, and vanillic, ferulic, gallic, and p-OH-benzoic acids were dominant. In contrast, the nutmeg extracts were rich in protocatechuic, vanillic, and ferulic acids.
Elder products are still underutilized sources of phytochemicals, mainly polyphenols, with extensive pharmacological effects on the human body. In this study, gingerbread cookies covered in chocolate (GC) were enriched with elderflower dry extract (EF) and juice concentrate (EB). The cookies (GC, GCEF, and GCEFEB) and the additives (EF and EB) were analyzed for total phenolic content (TPC), phenolic compound profile, antioxidant capacity (AC), and advanced glycation end products’ (AGEs) formation in both the free and bound phenolic fractions. Sensory analysis of the cookies was performed using an effective acceptance test (9-point hedonic scale), and purchase intent was evaluated using a 5-point scale. It was found that the flavonoid content was significantly increased (20–60%) when EF and EB were added to the cookies. Moreover, the EF addition to chocolate-covered GCs enhanced the content of phenolic acids (up to 28%) in the bound phenolic fraction. An increase in the AC values of enriched cookies was found, and the free phenolic fraction differed significantly in this regard. However, inhibition of AGEs by elder products was only observed in the bound phenolic fraction. In addition, EF and EB improved the overall acceptance of the cookies, mostly their taste and texture. Thus, elder products appear to be valuable additives to gingerbread cookies, providing good sensory quality and functional food characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.