BackgroundRecent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization.DescriptionRNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics) is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided. RNA FRABASE 2.0 is freely available at http://rnafrabase.cs.put.poznan.pl.ConclusionsRNA FRABASE 2.0 provides a novel database and powerful search engine which is equipped with new data and functionalities that are unavailable elsewhere. Our intention is that this advanced version of the RNA FRABASE will be of interest to all researchers working in the RNA field.
Online judges are systems designed for the reliable evaluation of algorithm source code submitted by users, which is next compiled and tested in a homogeneous environment. Online judges are becoming popular in various applications. Thus, we would like to review the state of the art for these systems. We classify them according to their principal objectives into systems supporting organization of competitive programming contests, enhancing education and recruitment processes, facilitating the solving of data mining challenges, online compilers and development platforms integrated as components of other custom systems. Moreover, we introduce a formal definition of an online judge system and summarize the common evaluation methodology supported by such systems. Finally, we briefly discuss an Optil.io platform as an example of an online judge system, which has been proposed for the solving of complex optimization problems. We also analyze the competition results conducted using this platform. The competition proved that online judge systems, strengthened by crowdsourcing concepts, can be successfully applied to accurately and efficiently solve complex industrial- and science-driven challenges.Comment: Authors pre-print of the article accepted for publication in ACM Computing Surveys (accepted on 19-Sep-2017
Despite years of study, it is still not clear how life emerged from inanimate matter and evolved into the complex forms that we observe today. One of the most recognized hypotheses for the origins of life, the RNA World hypothesis, assumes that life was sparked by prebiotic replicating RNA chains. In this paper, we address the problems caused by the interplay between hypothetical prebiotic RNA replicases and RNA parasitic species. We consider the coexistence of parasite RNAs and RNA replicases as well as the impact of parasites on the further evolution of replicases. For these purposes, we used multi-agent modeling techniques that allow for realistic assumptions regarding the movement and spatial interactions of modeled species. The general model used in this study is based on work by Takeuchi and Hogeweg. Our results confirm that the coexistence of parasite RNAs and replicases is possible in a spatially extended system, even if we take into consideration more realistic assumptions than Takeuchi and Hogeweg. However, we also showed that the presence of trade-off that takes into the account an RNA folding process could still pose a serious obstacle to the evolution of replication. We conclude that this might be a cause for one of the greatest transitions in life that took place early in evolution—the separation of the function between DNA templates and protein enzymes, with a central role for RNA species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.