The International Space Station (ISS) is a unique habitat for humans and microorganisms. Here, we report the results of the ISS experiment EXTREMOPHILES, including the analysis of microbial communities from several areas aboard at three time points. We assess microbial diversity, distribution, functional capacity and resistance profile using a combination of cultivation-independent analyses (amplicon and shot-gun sequencing) and cultivation-dependent analyses (physiological and genetic characterization of microbial isolates, antibiotic resistance tests, co-incubation experiments). We show that the ISS microbial communities are highly similar to those present in ground-based confined indoor environments and are subject to fluctuations, although a core microbiome persists over time and locations. The genomic and physiological features selected by ISS conditions do not appear to be directly relevant to human health, although adaptations towards biofilm formation and surface interactions were observed. Our results do not raise direct reason for concern with respect to crew health, but indicate a potential threat towards material integrity in moist areas.
BackgroundThe International Space Station (ISS) represents a unique biotope for the human crew but also for introduced microorganisms. Microbes experience selective pressures such as microgravity, desiccation, poor nutrient-availability due to cleaning, and an increased radiation level. We hypothesized that the microbial community inside the ISS is modified by adapting to these stresses.For this reason, we analyzed 8–12 years old dust samples from Russian ISS modules with major focus on the long-time surviving portion of the microbial community. We consequently assessed the cultivable microbiota of these samples in order to analyze their extremotolerant potential against desiccation, heat-shock, and clinically relevant antibiotics. In addition, we studied the bacterial and archaeal communities from the stored Russian dust samples via molecular methods (next-generation sequencing, NGS) and compared our new data with previously derived information from the US American ISS dust microbiome.ResultsWe cultivated and identified in total 85 bacterial, non-pathogenic isolates (17 different species) and 1 fungal isolate from the 8–12 year old dust samples collected in the Russian segment of the ISS. Most of these isolates exhibited robust resistance against heat-shock and clinically relevant antibiotics. Microbial 16S rRNA gene and archaeal 16S rRNA gene targeting Next Generation Sequencing showed signatures of human-associated microorganisms (Corynebacterium, Staphylococcus, Coprococcus etc.), but also specifically adapted extremotolerant microorganisms. Besides bacteria, the detection of archaeal signatures in higher abundance was striking.ConclusionsOur findings reveal (i) the occurrence of living, hardy microorganisms in archived Russian ISS dust samples, (ii) a profound resistance capacity of ISS microorganisms against environmental stresses, and (iii) the presence of archaeal signatures on board. In addition, we found indications that the microbial community in the Russian segment dust samples was different to recently reported US American ISS microbiota.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-016-0217-7) contains supplementary material, which is available to authorized users.
Samples of microorganisms from the surface of constructions of Mir Space Station (Mir SS) were taken and examined after 13 years of operation. The following microorganisms were isolated and identified: 12 fungal species belonging to the genera Penicillium , Aspergillus , Cladosporium , and Aureobasidium ; 3 yeast species belonging to the genera Debaryomyces , Candida , and Rhodotorula ; and 4 bacterial species belonging to the genera Bacillus , Myxococcus , and Rhodococcus . The predominant species in all samples was Penicillium chrisogenum . It was shown that the fungi isolated could damage polymers and induce corrosion of aluminummagnesium alloys. We commenced a study of microbial degraders on constructions of the Russian section of the International Space Station (RS ISS). Twenty-six species of fungi, bacteria, yeasts, and actinomycetes, known as active biodegraders, were identified in three sample sets taken at intervals. We founded a collection of microorganisms surviving throughout space flights. This collection can be used to test spacecraft production materials, in order to determine their resistance to biodegradation.
The International Space Station (ISS) is a unique, completely confined habitat for the human crew and co-inhabiting microorganisms. Here, we report on the results of the ISS experiment “EXTREMOPHILES”. We aimed to exploit the microbial information obtained from three surface and air sampling events aboard the International Space Station during increments 51 and 52 (2017) with respect to: i) microbial sources, diversity and distribution within the ISS, ii) functional capacity of microbiome and microbial isolates, iii) extremotolerance and antibiotics-resistance (compared to ground controls), and iv) microbial behavior towards ISS-relevant materials such as biofilm formation, or potential for degradation. We used wipe samples and analyzed them by amplicon and metagenomics sequencing, cultivation, comparative physiological studies, antibiotic resistance tests, genome analysis of isolates and co-incubation experiments with ISS-relevant materials. The major findings were: i) the ISS microbiome profile is highly similar to ground-based confined indoor environments, ii) the ISS microbiome is subject to fluctuations and indicative for the (functional) location, although a core microbiome was present over time and independent from location, iii) the ISS selects for microorganisms adapted to the extreme environment, but does not necessarily induce genomic and physiological changes which might be relevant for human health, iv) cleanrooms and cargo seems to be a minor source of microbial contamination aboard, and v) microorganisms can attach to and grow on ISS-relevant materials. Biofilm formation might be a threat for spacecraft materials with the potential to induce instrument malfunctioning with consequences for mission success. We conclude that our data do not raise direct reason for concern with respect to crew health, but indicate a potential threat towards biofilm formation and material integrity in moist areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.