Immune cells and their cytokine products have powerful local effects within body tissues. There has been great interest in the potential role of these cells, not only during destruction of the corpus luteum but also during its functional lifespan. In this study, lymphocytes, macrophages and major histocompatibility complex class II molecules were quantified using immunohistochemistry and the reverse transcription-polymerase chain reaction was used to detect mRNA for tumour necrosis factor alpha and interferon gamma within corpora lutea from three groups of cows: (1) corpora lutea collected at an abattoir and assessed visually into four stages (stage I (days 1-5), stage II (days 6-12), stage III (days 13-18) and stage IV (days 19-21) of the oestrous cycle); (2) corpora lutea collected around natural luteolysis (days 14-20); and (3) corpora lutea collected 6, 12 and 24 h after prostaglandin F 2 alpha-induced luteolysis. The numbers of T lymphocytes (CD5+ and CD8+) were significantly higher (P < 0.05) at stage IV and from day 16 onwards, before functional luteolysis. There were significantly higher numbers (P < 0.01) of macrophages at stages I, III and IV compared with stage II in visually staged tissue. Major histocompatibility complex class II molecules were increased (P < 0.05) at stages I and IV compared to stage II and at all times after induced luteolysis. Using reverse transcription-polymerase chain reaction, mRNA encoding tumour necrosis factor alpha and interferon gamma was detected in all luteal tissue collected around natural luteolysis and after induced luteolysis. These findings, particularly the increase in T lymphocytes before functional luteolysis, provide further evidence of a significant role for the immune system in affecting reproductive function in cows.
The objective of this study was to investigate the possible effect of recombinant bovine somatotropin (BST) on ovarian folliculogenesis and ovulation rate. Twelve Hereford x Friesian heifers received daily injections of either 25 mg BST (6 heifers) or vehicle (6 heifers) for a period of two estrous cycles until slaughter. Blood samples were collected three times a week for measurements of peripheral growth hormone (GH), insulin-like growth factor I (IGF-I), FSH, LH, estradiol, and progesterone. Serial blood samples were also taken every 10 min for 8 h on Days 12 and 19 of the second estrous cycle to monitor GH, IGF-I, FSH, and LH profiles. At the end of treatment (Day 7 of the third estrous cycle), the heifers were killed and their ovaries were collected. Ovulation rate was determined by counting the number of fresh corpora lutea (CL). All antral follicles greater than or equal to 2 mm in diameter were dissected to assess antral follicle populations. Granulosa and thecal cells from the three largest follicles and CL from each heifer were collected for FSH and LH binding measurements. All heifers had a single ovulation. The treated heifers had significantly more antral follicles (60.2 +/- 6.7) than did the animals in the control group (33.2 +/- 3.2) (p less than 0.001). When follicles were grouped according to diameter, the mean numbers of follicles greater than 10 mm, 5-10 mm, and 2-5 mm in diameter were 0.8 +/- 0.2, 6.8 +/- 1.4, and 52.5 +/- 6.5 for the treated group, and 0.8 +/- 0.2, 6.5 +/- 1.0, and 25.8 +/- 2.7 for controls.(ABSTRACT TRUNCATED AT 250 WORDS)
A novel experimental model was developed in cattle to investigate the requirement for FSH and LH during ovarian follicle growth and development. On Day 5 of the estrous cycle, 7 heifers were each implanted with an osmotic minipump containing a GnRH agonist (GnRHa), Buserelin (release rate, 2.5 micrograms/h). Another 7 heifers served as controls. Each minipump was replaced 28 days later with a second pump, which was left in place for a further 20 days. Blood samples were collected daily throughout the experimental period, and frequent samples were also collected on both days of minipump insertion and at 10 days after insertion of the second pump. The ovaries of all heifers were scanned daily by real-time ultrasonography to monitor follicular dynamics. All controls displayed 2 or 3 waves of FSH and follicular development per estrous cycle during the experiment. Insertion of the first minipump produced a large LH and FSH surge and induced ovulation in all 7 animals. Within 8 days of the start of treatment, serum LH concentrations fell to basal levels; they then remained constant at this level throughout the infusion period, only beginning to recover 4-5 days after the termination of infusion. After the initial increase, FSH returned to basal levels before showing a normal wave that was coincident with the emergence, growth, and regression of a dominant follicle. However, despite the peak levels of FSH, dominant follicles from the next wave failed to grow beyond 7-9 mm; they remained at this size for 3 wk until 3-4 days after insertion of the second minipump, when FSH fell precipitously to reach low levels that were maintained throughout the remainder of the infusion. After this fall in FSH concentrations, these follicles regressed rapidly, and no antral follicles > 4 mm were detected until after the termination of treatment. Thereafter, FSH concentrations increased significantly; the increase was accompanied by the emergence of a follicular wave and development of a dominant follicle, with estrus observed 8-11 days later. In conclusion, this study has demonstrated clearly that in cattle the early stages of follicle development (< or = 4 mm) are not dependent on acute support by gonadotropins. However, FSH is required for further growth of follicles up to 9 mm, while LH pulses are indispensable for follicle development beyond 9 mm in diameter. The model developed in this study should be valuable for studying the control of ovarian follicle development and atresia in vivo.
The effects of recombinant bovine somatotrophin (BST) on the dynamics of ovarian follicular growth and development and peripheral insulin concentrations were investigated. Initially, studies were carried out in a population of Hereford x Friesian heifers to validate the ultrasound technique. In the first experiment, 12 heifers were injected daily with either 25 mg BST or vehicle for two oestrous cycles, and the effects on follicular dynamics and peripheral insulin were determined. In a second experiment, 12 heifers were given a single injection of 10 ml saline or 320 mg BST in a sustained-release formulation to examine the temporal relationships between growth hormone (GH), insulin-like growth factor-1 (IGF-1), insulin and the number of follicles. The validation studies demonstrated that small follicles (< 5 mm in diameter) could be clearly detected by real-time ultrasound, and that 75% (9 of 12) of heifers showed three waves of dominant follicle development during the oestrous cycle, whereas the remainder had only two waves. The changes in the numbers of follicles of the three size categories (< 5 mm, small; 5-10 mm, medium-sized and > 10 mm, large) also displayed a wave pattern similar to that of the dominant follicle, with a marked reduction in the number of subordinate follicles as the dominant follicle grew and reached its maximum size. In Expt 1, BST treatment increased the number of small follicles and caused a rise in peripheral insulin concentrations (P < 0.01) throughout the treatment period.(ABSTRACT TRUNCATED AT 250 WORDS)
The effect of chronic treatment with a gonadotrophin-releasing hormone agonist (GnRHa) on ovarian function in cattle was investigated by injecting heifers i.m. twice a day with saline, 5 micrograms GnRHa (Buserelin) or 10 micrograms GnRHa (n = 7) for 21 days. Blood samples were taken twice a day during the treatment period, and then three times a day for 7 days and once daily for a further 4 days. Frequent samples were also collected on day 1, day 10 and day 21 of treatment. The ovaries of all heifers were examined daily using real-time ultrasonography throughout the experimental period. No significant differences in the response were observed between two doses of GnRHa. The first GnRHa injection produced a large LH and FSH surge and this acute response was still present by day 21 of treatment, but both the magnitude and duration of response were significantly attenuated (P < 0.01). After an initial increase, LH returned to the basal concentration, which was maintained until the termination of treatment, when concentrations increased significantly, with a preovulatory surge occurring approximately 6 days later. Peripheral FSH concentrations during the oestrous cycle in control animals displayed a pattern of three waves, each of which closely preceded a wave of follicular development. Concentrations of FSH in GnRHa-treated heifers showed a normal pattern for the first wave after the start of treatment. During the next wave, concentrations increased and remained at the peak values until about 4 days after the end of treatment. An additional ovulation was induced in 11 of 14 GnRHa-treated heifers within 2-3 days of the start of treatment, and a significant (P < 0.05) increase in serum progesterone concentrations was detected 2 days later. All GnRHa-treated heifers then showed a normal follicular wave, with the development and regression of a dominant follicle. The dominant follicles from the next wave grew to only 7-9 mm in diameter and remained at this size until the end of treatment, when they resumed growth, ovulated approximately 7 days later and formed corpora lutea. We conclude that chronic treatment of heifers with GnRHa for 3 weeks suppresses pulsatile secretion of LH and blocks the development of dominant follicles beyond 9 mm in diameter, preventing the preovulatory LH surge and ovulation. However, GnRHa did not suppress the secretion of FSH within the 3 week treatment period. The maintenance of the dominant follicles for an extended period should provide an ideal model to study the control of follicular atresia in cattle in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.