Recently, there has been an increase in the production of devices to monitor mental health and stress as means for expediting detection, and subsequent management of these conditions. The objective of this review is to identify and critically appraise the most recent smart devices and wearable technologies used to identify depression, anxiety, and stress, and the physiological process(es) linked to their detection. The MEDLINE, CINAHL, Cochrane Central, and PsycINFO databases were used to identify studies which utilised smart devices and wearable technologies to detect or monitor anxiety, depression, or stress. The included articles that assessed stress and anxiety unanimously used heart rate variability (HRV) parameters for detection of anxiety and stress, with the latter better detected by HRV and electroencephalogram (EGG) together. Electrodermal activity was used in recent studies, with high accuracy for stress detection; however, with questionable reliability. Depression was found to be largely detected using specific EEG signatures; however, devices detecting depression using EEG are not currently available on the market. This systematic review highlights that average heart rate used by many commercially available smart devices is not as accurate in the detection of stress and anxiety compared with heart rate variability, electrodermal activity, and possibly respiratory rate.
Stress is an inherent part of the normal human experience. Although, for the most part, this stress response is advantageous, chronic, heightened, or inappropriate stress responses can have deleterious effects on the human body. It has been suggested that individuals who experience repeated or prolonged stress exhibit blunted biological stress responses when compared to the general population. Thus, when assessing whether a ubiquitous stress response exists, it is important to stratify based on resting levels in the absence of stress. Research has shown that stress that causes symptomatic responses requires early intervention in order to mitigate possible associated mental health decline and personal risks. Given this, real-time monitoring of stress may provide immediate biofeedback to the individual and allow for early self-intervention. This study aimed to determine if the change in heart rate variability could predict, in two different cohorts, the quality of response to acute stress when exposed to an acute stressor and, in turn, contribute to the development of a physiological algorithm for stress which could be utilized in future smartwatch technologies. This study also aimed to assess whether baseline stress levels may affect the changes seen in heart rate variability at baseline and following stress tasks. A total of 30 student doctor participants and 30 participants from the general population were recruited for the study. The Trier Stress Test was utilized to induce stress, with resting and stress phase ECGs recorded, as well as inter-second heart rate (recorded using a FitBit). Although the present study failed to identify ubiquitous patterns of HRV and HR changes during stress, it did identify novel changes in these parameters between resting and stress states. This study has shown that the utilization of HRV as a measure of stress should be calculated with consideration of resting (baseline) anxiety and stress states in order to ensure an accurate measure of the effects of additive acute stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.