In the ONH, pressure-induced injury results in cell proliferation and dramatically altered gene expression. For specific genes, expression levels were most altered by focal injury, suggesting that further array studies may identify initial, and potentially injurious, altered processes.
Background-Chronic alcoholism leads to the onset and progression of alcoholic cardiomyopathy through toxic mechanisms of ethanol and its metabolite, acetaldehyde. This study examined the impact of altered acetaldehyde metabolism through systemic transgenic overexpression of aldehyde dehydrogenase-2 (ALDH2) on chronic alcohol ingestion-induced myocardial damage. Methods and Results-ALDH2 transgenic mice were produced with the chicken -actin promoter. Wild-type FVB and ALDH2 mice were placed on a 4% alcohol diet or a control diet for 14 weeks. Myocardial and cardiomyocyte contraction, intracellular Ca 2ϩ handling, histology (hematoxylin and eosin, Masson trichrome), protein damage, and apoptosis were determined. Western blot was used to monitor the expression of NADPH oxidase, calcineurin, apoptosisstimulated kinase (ASK-1), glycogen synthase kinase-3 (GSK-3), GATA4, and cAMP-response element binding (CREB) protein. ALDH2 reduced the chronic alcohol ingestion-induced elevation in plasma and tissue acetaldehyde levels. Chronic alcohol consumption led to cardiac hypertrophy, reduced fractional shortening, cell shortening, and impaired intracellular Ca
Senescence is accompanied by oxidative stress and cardiac dysfunction, although the link between the two remains unclear. This study examined the role of antioxidant metallothionein on cardiomyocyte function, superoxide generation, the oxidative stress biomarker aconitase activity, cytochrome c release, and expression of oxidative stress-related proteins, such as the GTPase RhoA and NADPH oxidase protein p47phox in young (5-6 mo) and aged (26-28 mo) FVB wild-type (WT) and cardiac-specific metallothionein transgenic mice. Metallothionein mice showed a longer life span (by approximately 4 mo) than FVB mice evaluated by the Kaplan-Meier survival curve. Compared with young cardiomyocytes, aged myocytes displayed prolonged TR(90), reduced tolerance to high stimulus frequency, and slowed intracellular Ca2+ decay, all of which were nullified by metallothionein. Aging increased superoxide generation, active RhoA abundance, cytochrome c release, and p47phox expression and suppressed aconitase activity without affecting protein nitrotyrosine formation in the hearts. These aging-induced changes in oxidative stress and related protein biomarkers were attenuated by metallothionein. Aged metallothionein mouse myocytes were more resistant to the superoxide donor pyrogallol-induced superoxide generation and apoptosis. In addition, aging-associated prolongation in TR90 was blunted by the Rho kinase inhibitor Y-27632. Collectively, our data demonstrated that metallothionein may alleviate aging-induced cardiac contractile defects and oxidative stress, which may contribute to prolonged life span in metallothionein transgenic mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.