The maximum normalized beta achieved in long-pulse tokamak discharges at low collisionality falls significantly below both that observed in short pulse discharges and that predicted by the ideal MHD theory. Recent long-pulse experiments, in particular those simulating the International Thermonuclear Experimental Reactor ͑ITER͒ ͓M. Rosenbluth et al., Plasma Physics and Controlled Nuclear Fusion ͑International Atomic Energy Agency, Vienna, 1995͒, Vol. 2, p. 517͔ scenarios with low collisionality e * , are often limited by low-m/n nonideal magnetohydrodynamic ͑MHD͒ modes. The effect of saturated MHD modes is a reduction of the confinement time by 10%-20%, depending on the island size and location, and can lead to a disruption. Recent theories on neoclassical destabilization of tearing modes, including the effects of a perturbed helical bootstrap current, are successful in explaining the qualitative behavior of the resistive modes and recent results are consistent with the size of the saturated islands. Also, a strong correlation is observed between the onset of these low-m/n modes with sawteeth, edge localized modes ͑ELM͒, or fishbone events, consistent with the seed island required by the theory. We will focus on a quantitative comparison between both the conventional resistive and neoclassical theories, and the experimental results of several machines, which have all observed these low-m/n nonideal modes. This enables us to single out the key issues in projecting the long-pulse beta limits of ITER-size tokamaks and also to discuss possible plasma control methods that can increase the soft  limit, decrease the seed perturbations, and/or diminish the effects on confinement.
The theory of tearing mode stabilization in toroidal plasmas by RF driven currents that are modulated in phase with the island rotation is investigated. A timescale analysis of the phenomena involved indicates that transient effects, such as finite time response of the driven currents, island rotation during the power pulses and the inductive response of the plasma, are intrinsically important. A dynamical model of such effects is developed, based on a 3-D Fokker-Planck code coupled to both the electric field diffusion equation and the island evolution equation. Extensive applications to both ECCD and LHCD in ITER are presented.
NIMROD is a code development project designed to study long-wavelength, lowfrequency, nonlinear phenomena in toroidal plasmas with realistic geometry and dynamics. The numerical challenges of solving the fluid equations for a fusion plasma are discussed and our discretization scheme is presented. Simulations of a resistive tearing mode show that time steps much greater than the Alfvén time are possible without loss of accuracy. Validation tests of a resistive interchange mode in a shaped equilibrium, a ballooning mode and nonlinear activity in reversed-field pinches are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.