Polycrystalline La0.7Sr0.3Mn1−xCoxO3 (x = 0.0–1.0) samples were synthesized by solid-state reaction. Structural and magnetization studies reveal the replacement of Co for Mn in La0.7Sr0.3Mn1−xCoxO3, and the decrease of the Curie temperature (TC) from 360 K (for x = 0) to 224 K (for x = 1). Positive slopes observed in the H/M versus M2 curves prove all the samples undergo a second-order magnetic phase transition. By analysis of the M(H) data at temperatures around TC using the Kouvel-Fisher method, we obtained the values of critical parameters (TC, β, γ, and δ). The results suggest an existence of short-range FM order in the sample x = 0 with β = 0.377. Meanwhile, for the case of Co-doped samples, their β values in the range of 0.403–0.457 indicate a coexistence of short and long-range FM order. This means that Co-doping favors establishing FM long-range order in La0.7Sr0.3Mn1−xCoxO3. From M(H) data, we have also determined the magnetic entropy change (ΔSm) for the samples. We have found that the ΔSm(T) curves for different applied fields are collapsed onto a universal curve by normalizing the ΔSm(T) curves to their respective maximum value ΔSmax (i.e., ΔSm(T)/ΔSmax) and rescaling the temperature axis above and below TC with θ=(T−TC)/(Tr−TC), where Tr is the reference temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.