Global pursuit to meet emergent energy demands necessitates finding simple and cost effective solutions. A promising solution is the application of renewable energy with thermo-mechanical conversion systems such as Stirling engines. Considerable effort is in hand at industry and academia domains to stimulate the development of Stirling technology. Foregoing, this paper focuses on modelling of Low Temperature Difference (LTD) gamma-type Stirling engine and investigating means of enhancing its performance through integration of Nitinol spring. The CFD models were comprehensively developed to simulate the engine, which have been subsequently validated through experimental data. The results reveal that addition of Nitinol Spring enhances the overall efficiency of engine demonstrating affirmative impact of shape memory alloy towards performance output of Stirling engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.