In this paper we present a method for obtaining first-order decoupled equations of motion for multirigid body systems. The inherent flexibility in choosing generalized velocity components as a function of generalized coordinates is used to influence the structure of the resulting dynamical equations. Initially, we describe how a congruency transformation can be formed that represents the transformation between generalized velocity components and generalized coordinate derivatives. It is shown that the proper choice for the congruency transformation will insure generation of first-order decoupled equations of motion for holonomic systems. In the case of nonholonomic systems, or holonomic systems with unreduced configuration coordinates, we incorporate an orthogonal complement in conjunction with the congruency transformation. A pair of examples illustrate the results. Finally, we discuss numerical implementation of congruency transformations to achieve first-order decoupled equations for simulation purposes.
In this paper we present a method for obtaining first-order decoupled equations of motion for multi-rigid body systems. The inherent flexibility in choosing generalized velocity components as a function of generalized coordinates is used to influence the structure of the resulting dynamical equations. Initially, we describe how a congruency transformation can be formed that represents the transformation between generalized velocity components and generalized coordinate derivatives. It is shown that the proper choice for the congruency transformation will insure generation of first-order decoupled equations of motion for holonomic systems. In the case of nonholonomic systems, or more complex dynamical systems, where the appropriate congruency transformation may be difficult to obtain, we present a constraint relaxation method based on the use of orthogonal complements. The results are illustrated using several examples. Finally, we discuss numerical implementation of congruency transformations to achieve first-order decoupled equations for simulation purposes.
In this paper we present a method for dynamically interpolating the motion of a rigid body in space between known end-positions. We begin by creating an image space representation of the equations of motion for a rigid body. These equations are written as a system of first-order state equations whose trajectory is optimized based on the minimization of a certain performance index. This leads to a set of boundary-value equations between the end positions, which when solved give the interpolated motion. Finally, a program developed to perform such interpolations numerically is utilized by generating a trajectory between given terminal states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.