This study reports the activity difference of zinc oxide modified bentonite clay (Photo-Zn-Bent) photocatalyst when in contact with different environmentally toxic pollutants in a single component and bi-component pollutant systems. The layered structure of purified and swollen nano-bentonite clay (Bent) has tunable interlayer spacing to grow zinc oxide (ZnO) nanoparticles, thereby integrating the adsorbing nature of clay and semiconductor property of ZnO in one hierarchical structure. Initial adsorption studies using methylene blue (MB) showed that the adsorption capacity of Photo-Zn Bent is greater than Bent and ZnO. The photocatalytic pollutant degradation activity of Photo-Zn Bent is compared with ZnO using both single component and bi-component pollutant systems (MB, phenol, mixture of MB and phenol, mixture of phenol and Cr(VI)). We found that Photo-Zn Bent displayed 33% greater MB degradation rate compared to ZnO. Photodegradation efficiency of Photo-Zn-Bent considerably differs for inorganic-organic and organic-organic bicomponent pollutant systems. In bicomponent systems, photodegradation rate of phenol decreased to an extent of 88% in the presence of MB, and increased to 31% in the presence of Cr(VI). On the other hand, photodegradation rate of MB remains unaffected in the presence of phenol, but increased to 56% in the presence of Cr(VI). However, if used in bicomponent pollutant systems for simultaneous cycles, Photo-Zn Bent showed lesser activity after 3 cycles, which in turn gave further insight on to the decay of catalyst with respect to the nature of pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.