Myelin oligodendrocyte glycoprotein (MOG) is an antigen of the myelin sheath, which may trigger immune cell responses and the production of auto‐antibodies in multiple sclerosis (MS). In this study, we used MOG 35‐55‐induced experimental autoimmune encephalomyelitis (EAE), a model of human MS, to assess the production of catalytically active immunoglobulin G (IgG) antibodies or abzymes which have been shown to be present in sera of patients with several autoimmune diseases. Here, we show that IgGs from the sera of control C57BL/6 mice are catalytically inactive. During development of EAE, a specific reorganization of the immune system of mice occurred leading to a condition which was associated with the generation of catalytically active IgGs hydrolysing DNA, myelin basic protein (MBP) and MOG which was associated with increased proteinuria, changes in differentiation of mice bone marrow hematopoietic stem cells (HSCs) and an increase in proliferation of lymphocytes in bone marrow, spleen and thymus as well as a significant suppression of cell apoptosis in these organs. The strongest alterations were found in the early disease phase (18–24 days after immunization) and were less pronounced in later EAE stages (40 days after EAE induction). We conclude that a significant increase in DNase and proteolytic activities of antibodies may be considered the earliest statistically significant marker of MOG‐induced EAE in mice. The possible differences in immune system reorganizations during preclinical phases of the disease, acute and late EAE, leading to production of different auto‐antibodies and abzymes as well other changes are discussed.
It was found that antibodies (Abs) against myelin basic protein (MBP) are the major components of the antibody response in multiple sclerosis (MS) patients. We have recently shown that IgGs from sera of MS patients are active in the hydrolysis of MBP. However, in literature there are no available data concerning possible MBP-hydrolyzing Abs in cerebrospinal fluid (CSF) of MS patients. We have shown that the average content of IgGs in their sera is about 195-fold higher than that in their CSF. Here we have compared, for the first time, the average content of lambda- and kappa-IgGs as well as IgGs of four different subclasses (IgG1-IgG4) in CSF and sera of MS patients. The average relative content of lambda-IgGs and kappa –IgGs in the case of CSFs (8.0 and 92.0%) and sera (12.3 and 87.7%) are comparable, while IgG1, IgG2, IgG3, and IgG4: CSF - 40.4, 49.0, 8.2, and 2.5% of total IgGs, respectively and the sera - 53.6, 36.0, 5.6, and 4.8%, decreased in different order. Electrophoretically and immunologically homogeneous IgGs were obtained by sequential affinity chromatography of the CSF proteins on protein G-Sepharose and FPLC gel filtration. We present first evidence showing that IgGs from CSF efficiently hydrolyze MBP and that their average specific catalytic activity is unpredictably ∼54-fold higher than that of Abs from sera of the same MS patients. Some possible reasons of these findings are discussed. We suggest that anti-MBP abzymes of CSF may promote important neuropathologic mechanisms in this chronic inflammatory disorder and in MS pathogenesis development.
It was found that high-affinity anti-DNA antibodies were one of the major components of the intrathecal IgG response in multiple sclerosis (MS) patients [Williamson et al., PNAS, 2001]. Recently we have shown that IgGs from the sera of MS patients are active in the hydrolysis of DNA. Here we have shown, for the first time, that average concentration of total proteins (132-fold), total IgGs (194-fold) and anti-DNA antibodies (200-fold) in the sera is significantly higher than that in the cerebrospinal fluid (CSF) of fifteen MS patients. The relative activities of total protein from sera and CSFs varied remarkably from patient to patient. It was surprising that the specific DNase activity of the total protein of CSF reparations were 198-fold higher than the serum ones. Electrophoretically and immunologically homogeneous IgGs were obtained by sequential affinity chromatography of the CSF proteins on protein G-Sepharose and FPLC gel filtration. We present first evidence showing that IgGs from CSF not only bind but efficiently hydrolyze DNA and that average specific DNase activity of homogeneous antibodies from CSF is unpredictably ∼49-fold higher than that from the sera of the same MS patients. Some possible reasons of these findings are discussed. We suggest that DNase IgGs of CSF may promote important neuropathologic mechanisms in this chronic inflammatory disorder and MS pathogenesis development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.