This paper investigates the selectivity of GMA-based-non-woven fabrics adsorbent towards copper ion (Cu) functionalized with several aliphatic amines. The aliphatic amines used in this study were ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA). The non-woven polyethylene/polypropylene fabrics (NWF) were grafted with glycidyl methacrylate (GMA) via pre-radiation grafting technique, followed by chemical functionalization with the aliphatic amine. To prepare the ion recognition polymer (IRP), the functionalized amine GMA-grafted-NWF sample was subjected to radiation crosslinking process along with the crosslinking agent, divinylbenzene (DVB), in the presence of Cu ion as a template in the matrix of the adsorbent. Functionalization with different aliphatic amine was carried out at different amine concentrations, grafting yield, reaction temperature, and reaction time to study the effect of different aliphatic amine onto amine density yield. At a concentration of 50% of amine and 50% of isopropanol, EDA, DETA, TETA, and TEPA had attained amine density around 5.12, 4.06, 3.04, and 2.56 mmol/g-ad, respectively. The amine density yield decreases further as the aliphatic amine chain grows longer. The experimental condition for amine functionalization process was fixed at 70% amine, 30% isopropanol, 60 °C for grafting temperature, and 2 h of grafting time for attaining 100% of grafting yield (Dg). The prepared adsorbents were characterized comprehensively in terms of structural and morphology with multiple analytical tools. An adsorptive removal and selectivity of Cu ion by the prepared adsorbent was investigated in a binary metal ion system. The IRP samples with a functional precursor of EDA, the smallest aliphatic amine had given the higher adsorption capacity and selectivity towards Cu ion. The selectivity of IRP samples reduces as the aliphatic amine chain grows longer, EDA to TEPA. However, IRP samples still exhibited remarkably higher selectivity in comparison to the amine immobilized GMA-g-NWF at similar adsorption experimental conditions. This observation indicates that IRP samples possess higher selectivity after incorporation of the ion recognition imprint technique via the radiation crosslinking process.
In this study, ligands originated from glycidyl methacrylate (GMA) and vinyl benzyl chloride (VBC) monomers were grafted onto fibrous polyethylene/polypropylene (PE/PP) substrate and the resulting grafted copolymers were functionalized with ethylenediamine (EDA). The changes in the chemical structure and crystallinity of the aminated adsorbents were evaluated using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), respectively. The PE/PP-g-PGMA-EDA adsorbent showed a CO2 adsorption capacity of 1.73 mmol/g from pure gas, which is 87% lower than that of PE/PP-g-PVBC-EDA (3.24 mmol/g) at 30 bars despite the higher density in the former adsorbent. The effect of temperature, selectivity and CO2 gas composition was further investigated for the PE/PP-g-PVBC-EDA adsorbent.
The paper presents a study for investigating i) the effect of amination of poly(GMA)-grafted polyethylene/polypropylene (PE/PP) substrates with trimethylamine (TMA) and ethylenediamine (EDA) and ii) their impact on carbon dioxide (CO2) adsorption capacity of the obtained adsorbents. The chemical, structural, and morphological changes of the aminated adsorbents were evaluated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM), respectively. The amination yield with TMA was 40% higher than EDA. However, the obtained adsorbent showed two times lower CO2 adsorption capacity (at 30 bars) than the adsorbent with EDA and stood at 0.6 mmol g-1 compared to 1.2 mmol g-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.