We study the structure and the dynamics in the formation of irreversible gels by means of molecular dynamics simulation of a model system where the gelation transition is due to the random percolation of permanent bonds between neighboring particles. We analyze the heterogeneities of the dynamics in terms of the fluctuations of the self-intermediate scattering functions: in the sol phase close to the percolation threshold, we find that this dynamic susceptibility increases with the time until it reaches a plateau. At the gelation threshold this plateau scales as a function of the wave vector k as k(eta-2), with eta being related to the decay of the percolation pair connectedness function. At the lowest wave vector, approaching the gelation threshold it diverges with the same exponent gamma as the mean cluster size. These findings suggest an alternative way of measuring critical exponents in a system undergoing chemical gelation.
We present a systematic study of dynamical heterogeneity in a model for permanent gels upon approaching the gelation threshold. We find that the fluctuations of the self-intermediate scattering function are increasing functions of time, reaching a plateau whose value, at large length scales, coincides with the mean cluster size and diverges at the percolation threshold. Another measure of dynamical heterogeneities-i.e., the fluctuations of the self-overlap-displays instead a peak and decays to zero at long times. The peak, however, also scales as the mean cluster size. Arguments are given for this difference in the long-time behavior. We also find that the non-Gaussian parameter reaches a plateau in the long-time limit. The value of the plateau of the non-Gaussian parameter, which is connected to the fluctuations of diffusivity of clusters, increases with the volume fraction and remains finite at the percolation threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.