We study the opto-electrical properties of Natronomonas pharaonis sensory rhodopsin II (NpSRII) by using a near-field microwave microprobe (NFMM) under external light illumination. To investigate the possibility of application of NFMM to biological macromolecules, we used time dependent properties of NPSRII before/after light activation which has three distinct states - ground-state, M-state, and O-state. The diagnostic ability of NFMM is demonstrated by measuring the microwave reflection coefficient (S(11)) spectrum of NpSRII under steady-state illumination in the wavelength range of 350-650 nm. Moreover, we present microwave reflection coefficient S(11) spectra in the same wavelength range for two fast-photocycling rhodopsins: green light-absorbing proteorhodopsin (GPR) and Gloeobacter rhodopsin (GR). In addition the frequency sweep shift can be detected completely even for tiny amounts of sample (∼10(-3) OD of rhodopsin). Based on these results NFMM shows both very high sensitivity for detecting conformational changes and produces a good time-resolved spectrum.
Optical radiation emitted from a metal-coated fiber tip apex when it emerges from a liquid into the air was measured. A strong enhancement of the output radiation and its strong dependence on the relative position of the tip to a liquid surface were observed. This phenomenon permits in situ recording of nanometric vibrations of the liquid and provides a basis for development of various ultrasensitive vibration detecting sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.