In this paper, an enriched–FEM method is presented based on the X-FEM technique by applying a damage–plasticity model to investigate the effect of FRP strengthening on the concrete arch. In this manner, the damage strain is lumped into the crack interface while the elastic and plastic strains are employed within the bulk volume of element. The damage stress–strain relation is converted to the traction separation law using an acoustic tensor. The interface between the FRP and concrete is modeled using a cohesive fracture model. The X-FEM technique is applied where the FE mesh is not necessary to be conformed to the fracture geometry, so the regular mesh is utilized independent of the position of the fracture. The accuracy of the proposed plastic-damage model is investigated under the monotonic tension, compression, and cyclic tension loading. Furthermore, the accuracy of the cohesive fracture model is investigated using the experimental data reported for the debonding test. In order to verify the accuracy of the proposed computational algorithm, the numerical results are compared with those of experimental data obtained from two tests conducted on reinforced concrete arches strengthened with FRP. Finally, a parametric study is performed by evaluating the effects of high to span ratio, longitudinal reinforcement ratio, and strengthening method.
In this paper, a computational technique is presented based on a concrete plastic-damage model to investigate the e ect of FRP strengthening of reinforced concrete arches. A plastic-damage model was utilized to capture the behavior of concrete. The interface between the FRP and concrete was modeled using a cohesive fracture model. In order to validate the accuracy of the damage-plastic model, a single element was employed under monotonic tension, monotonic compression, and cyclic tension loads. An excellent agreement was observed between the prede ned strain-stress curve and that obtained by the numerical model. Furthermore, the accuracy of the cohesive fracture model was investigated by comparing the numerical results with those of experimental data. Finally, in order to verify the accuracy of the proposed computational algorithm, the results were compared with the experimental data obtained through two tests conducted on reinforced concrete arches strengthened with FRP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.